

IMM Quarterly Report: Summer 2020

MISO Independent Market Monitor

David Patton, Ph.D. Potomac Economics

September 15, 2020

Highlights and Findings: Summer 2020

- The MISO markets performed competitively this Summer, market power mitigation was infrequent, and conduct was competitive overall.
- A continuing trend of low natural gas prices in the first two months contributed to energy prices falling 6 percent compared to last summer.
 - Gas prices averaged less than \$2 per MMBTU this quarter, rising in August.
- MISO's summer peak load slightly above 117 GW occurred on August 24.
 - ✓ Average load remained consistent with prior summers, as COVID-related impacts diminished and were offset by hotter temperatures.
- MISO experienced several significant events this summer.
 - ✓ In Michigan, MISO declared a Local Transmission Emergency in June and a Transmission System Emergency in July, resulting in very high congestion.
 - MISO experienced a week of hot temperatures in early July and on July 7, it declared a Maximum Generation Event in the Midwest region.
 - ✓ In Western WOTAB on Aug 27, MISO declared an emergency and cut load.
 - Prices were finalized a week after the event and set at the VOLL.
 - MISO also declared on Local Transmission Emergency in Texas on August 28 that was caused by storm-related transmission outages.

-2-

Quarterly Summary

				Chan	nge ¹				Chan	ige ¹		
-			-	Prior	Prior			-	Prior	Prior		
		Value		Qtr. Year				Value	Qtr.	Year		
	RT Energy Prices (\$/MWh)	0	\$24.36	32%	-6%	FTR Funding (%)		101%	99%	96%		
	Fuel Prices (\$/MMBtu)					Wind Output (MW/hr)	•	6,128	-25%	44%		
1	Natural Gas - Chicago	0	\$1.76	8%	-15%	Guarantee Payments (\$M) ⁴						
	Natural Gas - Henry Hub	0	\$1.83	7%	-19%	Real-Time RSG	•	\$16.6	153%	14%		
æ.,	Western Coal	٩	\$0.68	-2%	-3%	Day-Ahead RSG		\$5.7	-9%	-1%		
	Eastern Coal		\$1.24	2%	-18%	Day-Ahead Margin Assurance		\$10.9	94%	173%		
	Load (GW) ²					Real-Time Offer Rev. Sufficiency		\$1.1	176%	55%		
	Average Load	0	83.6	29%	0%	Price Convergence ⁵						
A	Peak Load	0	117.5	28%	-3%	Market-wide DA Premium		-1.1%	2.6%	0.3%		
F.	% Scheduled DA (Peak Hour)		100.3%	98.8%	99.3%	Virtual Trading						
to	Transmission Congestion (\$M)					Cleared Quantity (MW/hr)		16,715	-8%	4%		
A	Real-Time Congestion Value	0	\$331.0	41%	23%	% Price Insensitive		28%	33%	32%		
	Day-Ahead Congestion Revenue	0	\$222.6	75%	47%	% Screened for Review		1%	1%	1%		
	Balancing Congestion Revenue ³		\$75.5	\$6.5	\$4.6	Profitability (\$/MW)		\$0.30	\$0.70	\$0.32		
	Ancillary Service Prices (\$/MWh)					Dispatch of Peaking Units (MW/hr)		2,569	829	1775		
	Regulation	٩	\$7.86	-2%	3%	Output Gap- Low Thresh. (MW/hr)		191	55	45		
	Spinning Reserves	٩	\$1.90	-11%	-12%	Other:						
	Supplemental Reserves	•	\$0.30	85%	-51%							
	Key: Expected		Notes:	1. Values	not in ita	lics are the values for the past period rather the	an the	e change.				
	Monitor/Discuss		_	2. Compa	arisons adj	justed for any change in membership.		-				
	Concern	3. Net real-time congestion collection, unadjusted for M2M settlements.										

© 2020 Potomac Economics

en tresserver anno

5. Values include allocation of RSG. -3-

4. Includes effects of market power mitigation.

Hot Week in Early July (Slides 21-25)

- Between July 1-10, MISO issued Hot Weather Alerts and Capacity Advisories for the Midwest due to high temperatures and humidity.
- Long-lead commitments. On July 1, MISO forecasted operating margins in the Midwest of only 4 and 3 percent on July 6 and 7, respectively.
 - ✓ MISO committed long-lead time units in the South to ensure power could be transferred as needed to the Midwest resulted in > \$800,000 in RSG.
 - ✓ From July 1-9, more than 1,700 MW on average were trapped in the South in the peak hours between 2 p.m. and 4 p.m. so their usefulness was limited.
 - ✓ The implied VOLL for these commitments exceeded \$40,000 per MWh. We have recommended VOLL for shortage pricing of \$23,000 so we find these commitments conservative, but not unreasonable.
- *Forecast Errors*. MISO's load forecast was impacted on multiple days because of large storms, causing significant forecast errors.
 - ✓ Day-ahead forecast errors were as high as 8 and 7 percent on July 8 and 10.

Hot Week in Early July (cont.)

- July 6. Conditions were tighter on July 6 than any other day of the week.
 - ✓ Although temperatures and load were not quite as high on this day, wind output was very low.
 - ✓ MISO declared conservative operations but did not proceed to an emergency.
- *July 7.* At 1 p.m., MISO declared a Max Gen Event that quickly escalated to an Emergency Event in the North and Central Regions.
 - ✓ The emergency led to the commitment of all available resources.
 - ✓ Morning temperatures rose more than expected, but storms flattened the load.
 - Ultimately, this caused: a) the emergency declaration to be unnecessary and
 b) the 433 MW of emergency-only resources to not set prices.
- July 8. July 8 was the hottest day of the week and exhibited the highest dayahead forecasted load.
 - Conditions ultimately were not tight because the load came in much lower than forecast; and
 - ✓ Wind output was very high and led to a large supply margin on this day.

Summer Capacity Availability (Slides 26-28)

- Currently, resource accreditation is based primarily on forced outages.
- In reality, a large share of the resources procured in the PRA are ultimately unavailable for reasons other than forced outage.
- On July 7, almost 15 GW was unavailable because of outages and derates.
 - ✓ The largest share of the unavailable MWs were in Zone 7.
 - ✓ In MISO's 2020-2021 PRA, Zone 7 cleared at CONE (\$257.53/MW-day).
 - Several capacity resources in Zone 7 were unavailable or derated during most of the summer, affecting congestion and prices in Michigan.
 - ✓ Two of these resources were together paid more than \$154 million in the PRA.
 - We continue to recommend that MISO reform capacity accreditation to reflect the actual availability of resources during MISO's tightest hours.
 - The average capacity derates in Zones 6 and 7 were 8.9 and 8.2 in the PRA.
 - The actual average derates (including outages) of conventional resources in the tightest hours in July in these zones were 23.5 and 28.4 percent, respectively.

Increased Congestion and Michigan Tx Emergencies (Slides 27-28, 30-31)

- Although gas prices remained low in June and July, day-ahead and real-time congestion rose 47 and 23 percent over last year, respectively.
- More than \$45 million in increased congestion was attributable to low generation availability in Michigan, including almost \$35 million on 2 days.
 - ✓ On June 10, MISO declared a Local Transmission Emergency from 11:25 a.m. to 5:20 p.m. to access 260 MW of emergency generation.
 - On July 9, MISO declared a Transmission System Emergency from 4:10 p.m. to 7 p.m. for two parallel constraints to access emergency ranges.
 - IESO was in EEA 1 and had reduced imports to Michigan by 700 MW.
 - ✓ A critical unit that would have provided significant congestion relief was unavailable during both events because of a COVID outbreak at the unit.
- Over \$10 million in day-ahead congestion accrued in Texas on August 28 because of the hurricane-related system effects.
- MISO has made progress in discussing TLR procedures with IESO.

August Load Shed in the Western Load Pocket

- On August 27, Hurricane Laura forced out several transmission lines and more than 6,000 MW of generation in Eastern Texas and Western Louisiana.
 - MISO declared an emergency and shed > 500 MW of firm load in the Western load pocket.
 - \checkmark The results of this event raise energy and capacity market concerns.
- *Energy Market.* Ex ante prices averaged \$15 per MWh throughout the event and did not reflect the shortages.
 - ✓ Operators had to manually re-dispatch multiple units.
 - MISO set ex post prices in the Western Load Pocket a week later to reflect the current value of lost load (VOLL) of \$3,500 for several hours.
 - ✓ MISO's current VOLL of \$3,500 per MWh is inefficiently low. MISO would have lost of up to 830 MW from a key resource to ERCOT if it had been tight, since ERCOT will set prices up to \$9,000 per MWh.
 - ✓ We have recommended that MISO update the VOLL used in shortage pricing based on data from the Midwest to \$23,000 per MWh.

August Load Shed in Western Load Pocket (Cont.)

- *Capacity Market*. We continue to be concerned that the capacity market zones do not reflect these load pockets that are very tight.
 - ✓ We have been recommending MISO define local capacity zones consistent with electrical constraints in order to send better economic signals.
 - ✓ The capacity market does not reflect the Western Load Pocket and, thus, produced inefficient results for this area in the 2020-2021 PRA.
 - 885 MW of UCAP cleared at \$6.88 per MW-day (very close to zero), down from almost 1,200 MW the prior year.
 - A large resource that straddles MISO and ERCOT and could have provided an additional 800 MW of UCAP did not clear the 2020-2021 PRA.
 - ✓ Fortunately, this resource switched to MISO and provided energy to the pocket on August 27 or the load shed would have been larger.

Additional Effects of Laura. On August 28, MISO declared an LTE from roughly 9:30 a.m to 7:30 p.m. in Eastern Texas due to damage from the hurricane.

Coal Commitment and Dispatch Study

- We are completing a study of coal resource commitments and dispatch to evaluate recent concerns raised that they are running uneconomically.
- Our study finds that most coal resources are started economically:
 - ✓ 90 percent were economic in 2016-2018 on the day they started, with roughly half offered economically and half scheduled as "must-run".
 - ✓ This share fell in 2019 as natural gas prices declined, making it more difficult to predict when the coal resources will be economic.
 - Merchant resources started economically 99 percent of the days they started.
 - Roughly 20 percent of the uneconomic starts appeared to be economic based on the prices on the day prior to the start.

	201	6-2018	2	2019
	Starts	% of Starts	Starts	% of Starts
All Coal Resources	5882		1800	
Economic Starts	5270	90%	1497	83%
Offered Economically	2553	43%	730	41%
Must-Run and Economic	2717	46%	767	43%
Uneconomic Starts	612	10%	303	17%
Not Expected to be Economic	491	8%	239	13%
<i>Expected to be Economic</i>	121	2%	64	4%

© 2

Coal Commitment and Dispatch Study (cont.)

- The most significant decision coal resources make is whether to stay online each day after they start.
- This decision is complicated by the costs of cycling the units when a unit turns off, it must then incur a start-up cost to come back on.
- We evaluated the decision to run each day and found:

Integrated Utilities

- ✓ The decision to stay on by integrated utilities was efficient **96** percent of the time, although they were only profitable on 80 percent of these days.
- ✓ The unprofitable days that are efficient reflect periods when the transitory losses of staying on are less than the cycling costs of turning off.
- Again, the conduct of merchant generators was more economic than their regulated counterparts.

Merchants

	0				
	Efficient	Not Efficient	 Efficient	Not Efficient	_
Profitable	80%	0%	96%	0%	Profitable
Unprofitable	16%	4%	4%	0%	Unprofitable
	96%	4%	100%	0%	

Progress on Improving Transmission Ratings

- We continue to promote the use of ambient temperature-adjusted ratings (AARs) and short-term emergency ratings as we've shown in our SOM reports, the benefits have averaged almost \$150 million per year.
- We've been meeting with the TOs, individual states and OMS.
- The states are recognizing the value of fuller utilization of the transmission system for their customers, and on August 13, OMS issued a position Statement on Enhanced Line Ratings.** It calls for TOs to:
 - ✓ Provide greater transparency and consistency in line ratings and methods.
 - ✓ Provide both normal and emergency ratings to MISO per the TO Agreement.
 - ✓ Develop procedures for identifying facilities for enhanced line ratings.
- Although valuable discussions are taking place and there has been little technical disagreement, progress has been very limited to date.
- MISO has participated in some of the meetings but has devoted very few resources to this effort more will be needed from MISO to make progress.

**https://www.misostates.org/images/PositionStatements/OMS_Position_Statement_Enhanced_Line_Ratings.pdf

Submittals to External Entities and Other Issues

- The IMM function has not experienced detrimental impacts from COVID-19.
- We responded to several FERC questions related to prior referrals and FERC investigations. We continued to meet with FERC on a weekly basis and we responded to several requests for information on market issues.
- In June, we presented a summary of MISO South market results and issues to the Entergy Regional State Committee.
- We filed comments in June in the FERC NOPR Incentives requesting FERC consider alternative incentives for existing transmission (other than ROE).
- In July, we presented the Spring Quarterly Report and the 2019 SOM Recommendations to the MSC.
- We participated in a FERC conference of the RTO market monitors in July, making presentations on FTR markets, RTO credit practices, and the evolving generation portfolios.

Submittals to External Entities and Other Issues

- We completed work with the SPP MMU and MISO on the Tier 1 and Tier 2 items and presented the results to the OMS.
 - We published the Tier 2 Interface Pricing study in August and presented it to OMS/RSC in September.
 - Additional items in Tier 2 and Tier 3 may be considered in the future if approved by the Markets Committee.
- We continue discussing issues with Emergency Pricing and Shortage Pricing with MISO and the MSC
 - These discussions included the elimination of offline ELMP pricing, which artificially mutes MISO's shortage pricing.
- We continued working with MISO on proposed improvements to the market power mitigation measures in Module D of the Tariff at the MSC.
 - ✓ We will also be supporting MISO's re-filing of the physical withholding provision in Module D with an affidavit.

Day-Ahead Average Monthly Hub Prices Summer 2018-2020

All-In Price 2018-2020

© 2020 Potomac Economics

-16-

ECONOMICS

Ancillary Service Prices Summer 2019 – 2020

MISO Fuel Prices Summer 2018-2020

Load and Weather Patterns Summer 2018-2020

Notes: Midwest degree day calculations include four representative cities in the Midwest: Indianapolis, Detroit, Milwaukee and Minneapolis. The South region includes Little Rock and New Orleans.

Capacity, Energy and Price Setting Share Summer 2019-2020

	τ	Unforced C	apacity		Energy	Output	Price Setting						
Summer	Total	(MW)	(IW) Share		Share	e (%)	SMP	(%)	LMP (%)				
	2019	2020	2019	2020	2019	2020	2019	2020	2019	2020			
Nuclear	12,225	12,107	10%	9%	16%	15%	0%	0%	0%	0%			
Coal	48,775	46,864	38%	37%	40%	38%	51%	43%	93%	90%			
Natural Gas	55,240	56,673	43%	44%	35%	37%	46%	55%	98%	97%			
Oil	1,691	1,568	1%	1%	0%	0%	0%	0%	0%	1%			
Hydro	3,966	4,034	3%	3%	2%	2%	2%	1%	4%	4%			
Wind	3,005	3,660	2%	3%	6%	8%	1%	0%	23%	50%			
Other	2,678	2,703	2%	2%	1%	1%	0%	0%	2%	7%			
Total	127,580	127,608											

Hot Week in Early July Daily High Temperatures

	Hist.		Ju	ıly	
	Avg.	6	7	8	9
Detroit	83	92	95	91	92
Indianapolis	85	92	91	94	91
Milwaukee	80	93	93	89	88
Minneapolis	84	86	88	93	82
Little Rock	92	92	91	88	90
New Orleans	92	82	88	94	96

Hot Week in Early July Midwest Region

en fitterererereren bi

Maximum Generation Event on July 7, 2020 Midwest Region

Peak Hour Midwest Capacity Availability Midwest Region - July 7, Hour 16

Uplift by Commitment Time Hot Week in Early July

Planning Resource Availability July 2020

* ICAP and UCAP based on data from PRA for 20/21 PY. Excludes intermittent resources (e.g., wind, solar) and LMRs. Tightest margin hours in July based on difference between FRAC load forecast and max available MWs (including offline with less than 24-hour lead).

Resource Unavailability by Outage Category July 2020 – Hour 16

* Unavailable MW based on the difference between ICAP (20/21 PY) and actual available MW. Excludes intermittent resources (e.g., wind, solar) and LMRs.

Planning Resource Availability in Zone 7 Largest 20 Units – July 2020

* ICAP and UCAP based on data from PRA for 20/21 PY. Excludes intermittent resources (e.g., wind, solar) and LMRs. Tightest margin hours in July based on difference between FRAC load forecast and max available MWs (including offline with less than 24-hour lead).

-28-

Generation Outages and Deratings Summer 2019-2020

			Sum Monthly Average 2018 2)19		2020			
600/			Sum Monthly Avera			ige N	Vidwest South Midw		Midwest	st South		Midwest S		South	
00%			Forc	ed: Loi	ng-Tern	1	4.4%	5.29	%	4.7%	4.7%	6	5.1%	3.59	%
			Force	ed: Sho	ort-Tern	n	1.5%	1.69	%	2.0%	1.79	6	1.9%	1.59	%
50%			Unre	ported	in CRC	OW	5.2%	8.69	%	5.3%	10.1	%	5.1%	11.3	\$%
			📕 Unpl	lanned:	Other		3.1%	3.29	%	2.7%	1.89	6	3.3%	2.49	%
400/			Plan	ned: Ex	xtensior	ns	0.8%	1.6%		1.5%	1.9%	6	1.5%	0.4%	
40%			I Plan	ned: N	ormal		4.1%	3.19	%	4.5%	3.9%	6	4.9%	2.79	%
	Total						19.2%	23.3%		20.8%	24.0%		21.9%	21.8	%
30% 20% 10%	0% 0% 0% 0%														
0%	Sum	Fall	Win	Spr	Sum	Sum	Fall	Win	Sp	r Sum	Sum	Fall	Win	Spr	Su
	20	19	19 2020			20)19		202	20	20	19		2020	
	1						Outage					Derate			

© 2020 Potomac Economics

Day-Ahead Congestion, Balancing Congestion and FTR Underfunding

© 2020 Potomac Economics

-30-

Value of Real-Time Congestion Summer 2019-2020

Real-Time Hourly Inter-Regional Flows Summer 2020

Trapped MW in MISO South Average, Hours Ending 15-17

Wind Output in Real-Time Daily Range and Average

© 2020 Potomac Economics

Day-Ahead and Real-Time Price Convergence Summer 2019-2020

Average DA-RT Price Difference Including RSG (% of Real-Time Price)

Indiana Hub	1	4	1	-1	4	-2	-4	-2	3	0	6	7	-3	0	8	-2	5
Michigan Hub	0	0	1	-5	4	1	-4	-1	3	-1	6	7	-6	4	3	-5	3
Minnesota Hub	1	-2	2	-3	6	1	0	2	5	-4	7	3	1	0	-5	-3	1
WUMS Area	-4	-1	-6	-11	6	4	-3	5	5	-1	3	6	2	1	1	-3	-2
Arkansas Hub	3	0	8	-1	2	-2	-4	-3	4	1	4	6	5	6	6	-7	2
Texas Hub	-4	-12	1	5	-18	1	-16	-1	4	1	6	10	5	13	7	2	-44
Louisiana Hub	5	2	10	0	6	2	1	-3	2	1	-2	12	4	5	6	1	0

-35-

Day-Ahead Peak Hour Load Scheduling Summer 2019-2020

Peaking Resource Dispatch Summer 2019-2020

-37-

Day-Ahead RSG Payments Summer 2019-2020

Real-Time RSG Payments Summer 2019-2020

Price Volatility Make Whole Payments Summer 2019-2020

Virtual Load and Supply Summer 2019-2020

© 2020 Potomac Economics

Virtual Load and Supply by Participant Type Summer 2019-2020

© 2020 Potomac Economics

Virtual Profitability Summer 2019-2020

-43-

Day-Ahead and Real-Time Ramp Up Price 2019-2020

-44-

Evaluation of ELMP Assumptions Summer 2020

Coordinated Transaction Scheduling (CTS) 2019-2020

© 2020 Potomac Economics

Monthly Output Gap Summer 2019-2020

-47-

Day-Ahead And Real-Time Energy Mitigation 2019-2020

Day-Ahead and Real-Time RSG Mitigation Summer 2019-2020

List of Acronyms

- AAR Ambient-Adjusted Ratings
- AMP Automated Mitigation Procedures
- BCA Broad Constrained Area
- CDD Cooling Degree Days
- CMC Constraint Management Charge
- CTS Coordinated Transaction Scheduling
- DAMAP Day-Ahead Margin Assurance Payment
- DDC Day-Ahead Deviation & Headroom Charge
- DIR Dispatchable Intermittent Resource
- HDD Heating Degree Days
- ELMP Extended Locational Marginal Price
- JCM Joint and Common Market Initiative
- JOA Joint Operating Agreement
- LAC Look-Ahead Commitment
- LSE Load-Serving Entities
- M2M Market-to-Market
- MSC MISO Market Subcommittee
- NCA Narrow Constrained Area

- ORDC Operating Reserve Demand Curve
- PITT Pseudo-Tie Issues Task Team
- PRA Planning Resource Auction
- PVMWP Price Volatility Make Whole Payment
- RACResource Adequacy Construct
 - RDT Regional Directional Transfer
- RSG Revenue Sufficiency Guarantee
- RTORSGP Real-Time Offer Revenue
 - Sufficiency Guarantee Payment
 - STE Short-Term Emergency
 - SMP System Marginal Price
 - SOM State of the Market
 - TLR Transmission Loading Relief
 - TCDC Transmission Constraint Demand Curve
 - VLR Voltage and Local Reliability
 - WUMS Wisconsin Upper Michigan System

© 2020 Potomac Economics