IMM Quarterly Report: Winter 2022

MISO Independent Market Monitor

David Patton, Ph.D. Potomac Economics

April 21, 2022

* To show year-over-year market trends in this report, we remove the estimated incremental effects of the 2021 Arctic Event (Feb. 13-19) for most comparisons as noted.

Highlights and Findings: Winter 2022

- The MISO markets performed competitively this winter market power mitigation was infrequent, and conduct was competitive overall.
- Energy prices rose 65 percent this quarter, largely because gas prices were 50 percent higher than last winter.*
 - \checkmark Coal supply was limited during most of the quarter, but limitations are easing.
- Although average load increased by one percent, peak load fell 3 percent as temperatures were milder in December and February than last winter.
- Day-ahead and real-time congestion rose 142 and 118 percent, respectively.*
 - ✓ Approximately half of real-time congestion was attributable to wind output.
 - ✓ Average hourly wind output continued to grow, rising 45 percent compared to last year, and a new output record of 23.6 GW was set on January 18.
- Day-ahead and real-time RSG increased 80 and 12 percent, respectively.*
 - MISO declared a Maximum Generation Warning on January 7 and real-time RSG exceeded \$2 million on that day.

✓ Improvements in the commitment process should reduce MISO's RSG costs.

* For select year-over-year comparisons, we remove the incremental impact of the 2021 Arctic Event (Feb. 13-19).

Quarterly Summary

				Chan	ige ¹				Chan	ige ¹			
-	Winter			Prior	Prior				Prior	Prior			
1			Value	Qtr.	Year			Value	Qtr.	Year			
	RT Energy Prices (\$/MWh)*	0	\$41.44	-18%	65%	FTR Funding (%)		102%	96%	102%			
	Fuel Prices (\$/MMBtu)					Wind Output (MW/hr)	9	13,072	28%	45%			
-	Natural Gas - Chicago*	•	\$4.07	-18%	50%	Guarantee Payments (\$M) ⁴							
	Natural Gas - Henry Hub*	0	\$4.20	-19%	50%	Real-Time RSG*	9	\$18.7	-26%	12%			
	Western Coal*	9	\$1.45	3%	114%	Day-Ahead RSG*	9	\$24.0	19%	80%			
1	Eastern Coal*	٩	\$3.53	11%	188%	Day-Ahead Margin Assurance*	9	\$7.8	-27%	35%			
	Load (GW) ²					Real-Time Offer Rev. Sufficiency*	0	\$1.0	-39%	51%			
	Average Load	•	78.4	9%	1%	Price Convergence ⁵							
-	Peak Load	9	100.6	2%	-3%	Market-wide DA Premium	9	1.6%	-1.8%	0.9%			
0	% Scheduled DA (Peak Hour)	٩	98.6%	98.1%	97.9%	Virtual Trading							
N	Transmission Congestion (\$M)					Cleared Quantity (MW/hr)	٩	21,031	9%	20%			
A	Real-Time Congestion Value*	0	\$750.8	-4%	118%	% Price Insensitive	9	54%	48%	31%			
	Day-Ahead Congestion Revenue*	•	\$461.2	-8%	142%	% Screened for Review	٩	3%	3%	2%			
	Balancing Congestion Revenue ³	9	\$2.2	\$21.0	\$45.2	Profitability (\$/MW)	9	\$0.95	\$1.14	\$2.00			
	Ancillary Service Prices (\$/MWh)					Dispatch of Peaking Units (MW/hr)	9	862	1302	588			
	Regulation*	٩	\$13.87	-17%	48%	Output Gap- Low Thresh. (MW/hr)	٩	255	688	237			
	Spinning Reserves*		\$2.55	-36%	35%	Other:							
	Supplemental Reserves*	9	\$0.67	-15%	75%								
Key: Sepected			Notes:	1. Values	not in ita	lics are the values for the past period rather th	an the	e change.					
	Monitor/Discuss		_	2. Compa	risons adj	justed for any change in membership.		-					
	Concern			3. Net rea	al-time con	ngestion collection, unadjusted for M2M settle	ement	s.					
	* Prior year comparison removes impact	of	4. Includes effects of market power mitigation.										

* Prior year comparison removes impact of the 2021 Arctic Event (Feb 13-19)

© 2022 Potomac Economics

en tretter tretter to

- 4. Includes checks of market power initigati
- 5. Values include allocation of RSG.

-3-

Coal Output, Coal Limitations, and Net Revenues (Slides 15-16)

- Higher gas prices in January and February* made coal resources more economic this winter, but coal capacity factors remained relatively low.
 - Coal resources' average net revenues exceeded \$12 per MWh this winter compared to roughly of \$4.50 per MWh last year.*
 - \checkmark Nonetheless, coal resources ran at lower capacity factors this winter.
- Beginning in the fall quarter, many coal facilities implemented coal conservation measures to ensure adequate winter inventories.
 - ✓ High coal generation in summer 2021, issues with coal transportation, and higher than normal demand for reagents drove the need to conserve coal.
 - ✓ We provided several coal-fired resource owners with opportunity cost-based references to support coal conservation measures beginning in the fall.
 - ✓ By February, lower-than-expected December gas prices and continued coal conservation allowed many resources to build up their coal inventories.
 - ✓ At the end of the winter quarter, the number of coal resources receiving opportunity cost-based references to maintain inventories fell by 40 percent.
 - \checkmark We are maintaining reference levels reflecting ongoing conservation measures.

* These year-over-year comparisons exclude the incremental impact of the 2021 Arctic Event (Feb. 13-19). © 2022 Potomac Economics -4-

High Quarterly Congestion (Slides 17-19)

- Day-ahead and real-time congestion more than doubled over last year.*
 - Higher natural gas prices contributed by increasing the marginal cost of moving generation to manage system flows.
 - \checkmark Half of the quarterly congestion was attributable to wind generation.
 - SPP and PJM wind units contributed to wind-related MISO congestion.
 - ✓ We continue to find that improving transmission ratings (by employing ambientadjusted ratings and emergency ratings) and implementing economic reconfigurations could lower congestion in MISO substantially.
- Approximately 20 percent of the total quarterly congestion accrued on two constraints impacted by a JOU resource that participates in MISO and SPP.
 - ✓ SPP does not bind MISO's constraints in its day-ahead market, so the unit appears to be economic in SPP's day-ahead market (but not in MISO's).
 - ✓ A significant amount of congestion could be eliminated were MISO and SPP to coordinate day-ahead commitments that impact both Balancing Areas.
 - ✓ A reconfiguration exists for the most impacted constraint, and MISO did employ the reconfiguration at times when it bound severely during the quarter.

* For this year-over-year comparison, we remove the incremental impact of the 2021 Arctic Event (Feb. 13-19). POTOMAC © 2022 Potomac Economics -5-

Real Time RSG and Jan. 7 Maximum Generation Warning (Slides 14, 21-22)

- Although MISO's commitment practices have improved, we continued to see that excess RSG was incurred throughout the quarter:
 - ✓ We estimated that approximately 12 percent of the real-time capacity RSG was associated with commitments that were ultimately needed.
 - ✓ Forecasting errors contributed to approximately 14 percent of capacity RSG.
 - ✓ Nearly three quarters of the real-time capacity RSG could be reduced by improving the commitment process – 17% of this was incurred on January 7.
 - ✓ MISO has begun to make better use of existing tools to produce more efficient commitment decisions and decommit resources when no longer needed.
- On January 7, MISO declared a Max Gen Warning in the Midwest for 6 a.m. that terminated early at 9:30 a.m. because of sufficient available supply.
 - ✓ After midnight, nearly 1.4 GW of units tripped offline, 270 MW were unable to procure fuel, and 550 MW slated for 5 a.m. starts were delayed 3 hours.
 - ✓ MISO incurred more than \$2 million in real-time RSG on that day, and we have estimated that 85 percent of that was due to excess commitments.
 - Ex-ante STR pricing did not reflect conditions and MISO re-priced it later.

High Day-Ahead RSG Payments and VLR Commitments (Slide 23)

- Day-ahead RSG was up 80 percent from last year, and up 33 percent even after adjusting for fuel price increases.*
- Most of the increase was attributable to a 60 percent increase in the fuel-adjusted RSG for VLR commitments in the South region.*
- Forced and planned transmission outages led to higher day-ahead VLR RSG for resources committed in the Amite South load pocket.
- In the Western load pocket, RSG was high and inflated by inefficiencies in the implementation of the operating guide.
 - ✓ A large unit came online in the Western load pocket in December 2020, but MISO and the participant have yet to complete a re-assessment of the operating guide.
 - ✓ The legacy op guide was also not implemented optimally after the entry of new unit.
 - ✓ Together, these issues have resulted in higher production costs of \$35 million over the past 12 months and almost \$14 million during the quarter, and they have led to day-ahead RSG increases of \$5.6 million and \$2 million in these timeframes.
 - ✓ We encourage MISO to work with its members to implement more timely updates to the operating guide when significant system changes occur.

* These year-over-year comparisons exclude the incremental impact of the 2021 Arctic Event (Feb. 13-19). © 2022 Potomac Economics -7-

Submittals to External Entities and Other Issues

- We responded to several FERC questions related to prior referrals and FERC investigations, and we responded to requests for information on market issues.
- In December, FERC Issue Order 881 which requires AARs and Emergency Ratings subject to facility evaluations and reliability limitations.
 - ✓ We filed for rehearing on the required implementation schedule.
 - ✓ However, we believe MISO and the TOs can implement many of these requirements and achieve most of the benefits in a much shorter timeframe.
- In January, we presented our Fall Quarterly Report to the Mkt Subcommittee.
- In January, we filed comments supporting MISO's proposed seasonal capacity market and accreditation proposals but opposing the minimum capacity obligation.
- In February, we presented a report on results in MISO South to the ERSC.
- We continue to meet with states on the need to reform MISO's capacity market demand to meet the Reliability Imperative and the benefits to the regulated utilities.
- We also continued working with MISO and others on:
 - Developing processes to identify and implement transmission reconfigurations that can reliably reduce congestion costs.
 - Reviewing the proposals for allocating economic property rights to transmission (Firm Flow Entitlements) under the market-to-market processes.

-8-

Day-Ahead Average Monthly Hub Prices Winter 2020–2022

All-In Price Winter 2020 – 2022

Ancillary Service Prices Winter 2021–2022

MISO Fuel Prices 2021-2022

-12-

* Removes impact of the 2021 Arctic Event (Feb 13-19).

Load and Weather Patterns Winter 2020–2022

<u>Notes</u>: Midwest degree day calculations include four reprentative cities: Indianapolis, Detroit, Milwaukee and Minneapolis. The South region includes Little Rock and New Orleans. *Effects estimated by MISO through back-casting using its load forecasting model.

Maximum Generation Warning Midwest, January 7, 2022

en freeeeeeeeeeee

Capacity, Energy and Price Setting Share Winter 2021–2022

	U	nforced Ca	pacity		Energy	Output	Price Setting					
Winter	Total ((MW)	Share	e (%)	Share	e (%)	SMP	(%)	LMP	(%)		
	2021	2022	2021	2022	2021	2022	2021	2022	2021	2022		
Nuclear	11,866	11,866	9%	9%	16%	16%	0%	0%	0%	0%		
Coal	46,740	44,603	36%	34%	41%	36%	45%	32%	87%	76%		
Natural Gas	58,431	59,168	45%	46%	26%	29%	53%	68%	98%	93%		
Oil	1,636	1,626	1%	1%	0%	0%	0%	0%	1%	0%		
Hydro	3,671	3,700	3%	3%	1%	1%	2%	0%	2%	0%		
Wind	4,304	4,467	3%	3%	12%	17%	0%	0%	56%	79%		
Other	3,145	3,881	2%	3%	3%	1%	0%	0%	12%	11%		
Total	129,794 129,311											

Capacity Factors By Fuel Type 2020–2022

Value of Real-Time Congestion Winter 2021–2022

ECONOMICS

Average Real-Time Congestion Components Winter 2021–2022

Day-Ahead Congestion, Balancing Congestion and FTR Underfunding

© 2022 Potomac Economics

Benefits of Ambient-Adjusted and Emergency Ratings Winter 2021–2022

		Savi	ngs (\$ Million	s)	- # of Eagilitag	
Ĭ	Winter	Ambient Adj. Ratings	Emergency Ratings	Total	for 2/3 of Savings	Share of Congestion
2021	Midwest	\$35.3	\$24.47	\$59.8	5	12.6%
	South	\$25.8	\$33.36	\$59.1	1	10.6%
	Total	\$61.1	\$57.8	\$118.9	6	11.5%
2022	Midwest	\$93.7	\$37.10	\$130.8	6	18.5%
	South	\$0.6	\$1.13	\$1.8	1	12.6%
	Total	\$94.4	\$38.2	\$132.6	7	18.4%

© 2022 Potomac Economics

Real-Time RSG Payments Winter 2021–2022

Real-Time Capacity Commitment and RSG

Day-Ahead RSG Payments Winter 2021–2022

-23-

Real-Time Hourly Inter-Regional Flows Winter 2022

Wind Output in Real Time Daily Range and Average

© 2022 Potomac Economics

-25-

Day-Ahead and Real-Time Price Convergence Winter 2021–2022

Average DA-RT Price Difference Including RSG (% of Real-Time Price)

Indiana Hub	7	1	0	23	1	-8	1	-2	-1	1	-4	-3	-3	3	-3	5
Michigan Hub	4	2	0	14	-1	-4	1	-3	0	1	-3	-1	-1	1	-3	6
Minnesota Hub	0	4	-1	6	3	-15	-9	-5	1	1	-7	-2	2	0	3	8
Arkansas Hub	-4	0	3	-14	-3	-6	-1	1	-5	3	-5	-2	5	-2	-2	3
Texas Hub	-3	0	0	-10	-6	0	-2	4	-1	3	-4	2	6	-1	-4	4
Louisiana Hub	-3	0	1	-14	-10	0	1	2	0	8	-5	3	3	-1	-3	5
																POTON

-26-

Day-Ahead Peak Hour Load Scheduling Winter 2021–2022

© 2022 Potomac Economics

-27-

Virtual Load and Supply Winter 2021–2022

Virtual Load and Supply by Participant Type Winter 2021–2022

Virtual Profitability Winter 2021–2022

-30-

Generation Outages and Deratings Winter 2021–2022

	70%			Win	Month	In Areas	2000		2020		,	2021			2022		
		win wonthly Ave					rage	Midwe	est S	South	Midwes	st South		Midwes	st So	outh	
	60%			📕 Foi	ced: L	ong-Ter	rm	3.4%		1.3%	5.6%	3	.7%	5.5%	2	.4%	
	0070			📕 Foi	ced: S	hort-Te	rm	1.5%		0.8%	2.6%	1	.8%	2.9%	1	.2%	
				📕 Un	reporte	d in CR	ROW	5.4%	1	2.2%	5.8%	10).9%	6.7%	11	.5%	
	50%			📕 Un	planne	d: Other	r	2.2%		0.7%	3.8%	1	.5%	4.0%	1	.9%	
>				📃 Pla	nned: l	Extensio	ons	1.5%		1.0%	1.3%	2	.2%	2.0%	1	.7%	
Share of Capacity	/0%			📕 Pla	nned: l	Normal		5.0%		7.0%	5.5%	6	.4%	7.6%	5	.7%	
ра	4070			Tot	tal			19.0%	6 2	3.1%	24.6%	26	5%	28.7%	24	.5%	
.e 01 Ca	30%																
DIId	20%																
	10%																
	0%																
		Win	Spr	Sum	Fall	Win	Win	Spr	Sun	n Fall	Win	Win	Spr	Sum	Fall	Win	
		2021 2022						2021 2022					2 2021 202				
				Total					Outag	ge				Derate			
															P	OTOM	

Price Volatility Make Whole Payments Winter 2021–2022

Day-Ahead and Real-Time Ramp Up Price Winter 2021–2022

Coordinated Transaction Scheduling (CTS) Winter 2021–2022

Monthly Output Gap Winter 2021–2022

© 2022 Potomac Economics

-35-

Day-Ahead And Real-Time Energy Mitigation Winter 2021 and 2022

* 14450 and 12232 mitigated unit hours in BCA and NCA are excluded for Feb 13 through Feb 19, 2021.

© 2022 Potomac Economics

Day-Ahead and Real-Time RSG Mitigation Winter 2021 - 2022

© 2022 Potomac Economics

-37-

List of Acronyms

٠

٠

٠

- AAR Ambient-Adjusted Ratings
- AMP Automated Mitigation Procedures
- BCA Broad Constrained Area
- CDD Cooling Degree Days
- CMC Constraint Management Charge
- CTS Coordinated Transaction Scheduling
- DAMAP Day-Ahead Margin Assurance Payment
- DDC Day-Ahead Deviation & Headroom Charge
- DIR Dispatchable Intermittent Resource
- HDD Heating Degree Days
- ELMP Extended Locational Marginal Price
- JCM Joint and Common Market Initiative
- JOA Joint Operating Agreement
- LAC Look-Ahead Commitment
- LSE Load-Serving Entities
- M2M Market-to-Market
- MSC MISO Market Subcommittee
 - NCA Narrow Constrained Area

- ORDC Operating Reserve Demand Curve
- PITT Pseudo-Tie Issues Task Team
- PRA Planning Resource Auction
- PVMWP Price Volatility Make Whole Payment
- RAC Resource Adequacy Construct
 - RDT Regional Directional Transfer
 - RSG Revenue Sufficiency Guarantee
- RTORSGP Real-Time Offer Revenue
 Sufficiency Guarantee Payment
 - SMP System Marginal Price
 - SOM State of the Market
 - STE Short-Term Emergency
 - STR Short-Term Reserves
 - TLR Transmission Loading Relief
 - TCDC Transmission Constraint Demand Curve
 - VLR Voltage and Local Reliability
- WUMS Wisconsin Upper Michigan System

