

IMM Quarterly Report: Spring 2024

MISO Independent Market Monitor

Carrie Milton
Potomac Economics

MISO Market Subcommittee July 9, 2024

Highlights and Findings: Spring 2024

- The MISO markets performed competitively this spring and market power mitigation was low overall.
- Energy prices fell 4 percent compared to last year because gas prices fell between 21 and 28 percent and average load was 1 percent below last spring.
 - ✓ The peak load was 5 percent below last spring and temperatures throughout the quarter were generally mild, with fewer cooling degree days overall.
- Average hourly wind production was up 11 percent over last year to 13.6 GW, and wind curtailments increased by 8 percent, averaging 1 GW per hour.
 - ✓ Significant wind forecasting errors during the quarter led to unmodeled constraint overloads and extensive operator manual interventions.
 - ✓ Instances of units manually re-dispatched (MRD) and capped doubled over last year, which contributed to higher DAMAP.
- Despite the lower gas prices, real-time congestion was similar to last year and day-ahead congestion rose 23 percent year over year.
 - ✓ Severe storms in mid-May caused transmission outages and resulted in high congestion, and the RDT bound more frequently compared to last spring.

Quarterly Summary

			Chan	ge 1				Chan	ge^{1}
Spring		•	Prior	Prior			-	Prior	Prior
1 0		Value	Qtr.	Year			Value	Qtr.	Year
RT Energy Prices (\$/MWh))	\$25.35	-19%	-4%	FTR Funding (%)	•	93%	96%	92%
Fuel Prices (\$/MMBtu)					Wind Output (MW/hr)		13,631	16%	11%
Natural Gas - Chicago	•	\$1.50	-52%	-28%	Wind Curtailed (MW/hr)		985	145%	8%
Natural Gas - Henry Hub		\$1.73	-38%	-21%	Guarantee Payments (\$M) ⁴				
Western Coal	•	\$0.77	-2%	-7%	Real-Time RSG	•	\$2.1	-74%	-68%
Eastern Coal	•	\$1.73	-4%	-40%	Day-Ahead RSG	•	\$7.4	-33%	20%
Load (GW) ²					Day-Ahead Margin Assurance	•	\$13.8	29%	81%
Average Load	•	69.2	-8%	-1%	Real-Time Offer Rev. Sufficiency	•	\$1.1	-39%	-32%
Peak Load	•	98.4	-8%	-5%	Price Convergence ⁵				
% Scheduled DA (Peak H	lour)	99.8%	99.8%	99.1%	Market-wide DA Premium	9	-6.3%	8.6%	2.5%
Transmission Congestion (S	SM)				Virtual Trading				
Real-Time Congestion Va	ılue	\$560.1	10%	0%	Cleared Quantity (MW/hr)	•	25,074	12%	-8%
Day-Ahead Congestion R	evenue	\$371.6	0%	23%	% Price Insensitive	•	43%	48%	44%
Balancing Congestion Re	venue ³	-\$8.9	\$17.6	\$7.5	% Screened for Review	9	2%	2%	2%
Ancillary Service Prices (\$/	MWh)				Profitability (\$/MW)	9	\$0.6	\$0.3	\$0.7
Regulation	•	\$12.14	32%	9%	Dispatch of Peaking Units (MW/hr)	•	1,611	1,328	1,516
Spinning Reserves	•	\$2.57	41%	16%	Output Gap- Low Thresh. (MW/hr)	•	31	63	120
Supplemental Reserves	•	\$0.27	59%	26%					

Key:

Expected

Monitor/Discuss

Concern

Notes: 1. Values not in italics are the values for the past period rather than the change.

- 2. Comparisons adjusted for any change in membership.
- 3. Net real-time congestion collection, unadjusted for M2M settlements.
- 4. Includes effects of market power mitigation.
- 5. Values include allocation of RSG.

Uncertainty Management: April 8 Solar Eclipse

- MISO planned for higher uncertainty going into the solar eclipse that occurred on April 8.
 - ✓ MISO increased the regulation, ramp and STR requirements by 600 MW, 400 MW and 1200 MW, respectively, between 12:30 pm and 4:00 pm.
- Although challenges arose, MISO was able to maintain reliability.
 - ✓ During the eclipse, roughly 4 GW of solar resources were unavailable, and an additional unexpected loss of 5 GW of wind occurred.
 - ✓ These changes created a very large demand for the non-intermittent fleet to ramp up going into the eclipse and ramp down coming out of it.
 - ✓ Operators leaned on regulation and avoided unnecessary commitments.
 - ✓ The day-ahead market cleared adequate headroom to manage the event.

Uncertainty Management: Uplift (Slides 21, 35-38)

- Real-time RSG fell 68 percent, but day-ahead RSG was up by 20 percent.
 - ✓ Improved commitment practices was a big contributor to the lower realtime uplift, along with lower gas prices.
 - ✓ Despite lower gas prices, day-ahead RSG rose because a coal-fired unit in a South load pocket was committed for reliability due to generation outages.
- Day-ahead Margin Assurance Payments (DAMAP) were up 81 percent to \$14 million because of operational challenges and manual operator actions.
 - ✓ The RDT bound more frequently this quarter, particularly in May.
 - ✓ Sometimes the RDT cleared in violation, causing prices in the Midwest to rise by \$500 per MWh this contributed to large, slower-ramping Midwest units receiving 33 percent of all DAMAP.
 - ✓ Manual operator interventions, including manual-redispatch and caps, led to \$2 million in DAMAP to compensate resources for lost market revenues.

Congestion and Challenging Operational Conditions (Slides 22-24, 30-32)

- Although gas prices fell between 20 and 30 percent, real-time congestion was similar to last year and day-ahead congestion rose 23 percent.
 - ✓ In mid-May, storms in the South and later in the Midwest contributed to high real-time congestion attributable to forced transmission and generation outages.
 - ✓ Ongoing drought conditions in Manitoba and higher prices in PJM in May led to lower average imports this quarter; MISO was a net exporter to Manitoba.
- Constraint violations caused by unmodeled flows are problematic and create problems for MISO operators.
- Unmodeled flows are largely due to intermittent forecast errors and resources not following MISO's dispatch signal. To manage the resulting reliability issues, operators have broad discretion to take out of market actions, including:
 - ✓ Manual redispatch actions and dispatch caps;
 - ✓ Transmission derates using the "limit control" parameter; and
 - ✓ Changing the transmission demand curve (TCDC) level.
- These actions can have substantial effects on the market outcomes and the costs borne by MISO's customers we provide examples in this report.

Wind Forecasting Issues and Operator Actions (Slide 20)

- We identified significant wind forecasting errors that have caused challenging congestion management issues and led to multiple caps and MRDs of wind.
 - ✓ Most wind resources rely on MISO's forecast, and rules allow wind units to produce all they can when their dispatch signal is equal to the MISO forecast.
 - ✓ This purpose of this rule is reasonable to prevent wind from being constrained by the forecast when it is low. Curtailment is only justified by congestion.
- Sizable unit-level forecasting errors caused unmodeled constraint overloads.
 - ✓ Suppliers do not always know when they are curtailed or affecting a constraint erroneous drops in forecast can cause a curtailed unit to be "released".
 - ✓ UDS solves as if units will follow dispatch setpoint, which cause LMPs to not reflect constraint overloads when resources are producing above their setpoint.
 - ✓ Since Jan. 2023, renewable forecast error caused 32 percent of physical constraint violations, while those not following dispatch caused 13 percent.
- Operators lack visibility into forecasting errors and why resources may not be following setpoints, prompting them to rely on caps and MRDs.
 - ✓ This leads to higher DAMAP, higher production costs and distorted LMPs.

Wind Forecasting Issues and Operator Actions (Cont'd)

- We identified an error in algorithm MISO uses to indicate to the wind forecast vendor that a units is being curtailed, which caused large sporadic errors.
 - ✓ This was very recently fixed, which will address the most impactful real-time forecasting errors, although other forecasting errors should be investigated.
- As wind and solar penetration grows and puts increasing strain on the grid, it is imperative that MISO prioritize the following to address these problems:
 - 1. Prioritize creating a dispatch flag ASAP to notify wind units when they must follow the dispatch setpoint (when they are causing flows on a constraint).
 - 2. Establish a penalty for resources not following setpoint beginning in the first interval of deviation when the dispatch flag is active.
 - 3. Generate persistence-based forecasts *in-house* to improve the RT forecast by:
 - reducing the lag between the output observation and the dispatch model running, which will significantly improve the real-time forecast; and
 - b) allowing MISO to make incremental improvements to the persistence logic.
 - 4. Collect real-time meteorological data from renewable resources.
 - 5. Improve visualization tools so operators may discern between wind units ignoring curtailments versus units experiencing forecasting errors.

Operating Actions to Manage Constraint: May 21 Example

- MISO has a number of operating actions that can be taken when it is struggling to manage the flows on a constraint.
- Different actions can have different unintended consequences that can prompt the need to take other actions. This occurred on May 21:
 - ✓ Severe storms reduced wind output, causing the RDT limit to be exceeded
 - ✓ Instead of committing up to 700 MW recommended by LAC, MISO derated the RDT interface limit causing prices in the Midwest to rise over \$200 per MWh.
 - ✓ The high energy value in the Midwest caused energy output to rise from some units in the Midwest that contributed to constraint violations.
 - ✓ To manage one violation, MISO MRD'd one key coal resource down 1300 MW
 - This MRD and further RDT derates, caused RDT to go into violation and raised prices in the Midwest by > \$700/MWh for more than 30 minutes.
 - The RDT flows were well below the contract limit during this period.
 - ✓ This led most Midwest units to be dispatched up, causing multiple constraints to be violated (value of RDT violation > value of the constraint violations).
 - ✓ Since the constraint violations are real, MISO MRD'd/capped over a dozen units (700 MW) to address these violations.

Operating Actions to Manage Constraint: May 21 Example

- These actions ultimately led to distorted prices and over \$1 million in DAMAP.
- This highlights the importance of taking the most appropriate operating actions.
- When the initial constraint was violated because the RDT dominated the value of managing the constraint (i.e., the TCDC), MISO could have increased the TCDC so the dispatch would bring it back under control.
- We simulated this alternative approach by replacing the MRDs with a TCDC adjustment for the period from 5 pm to 11 pm, which showed:
 - ✓ \$145,000 less constraint violation costs, \$85,000 less production costs, \$828,000 less DAMAP and much lower real-time energy prices.
 - ✓ The value of real-time energy (price * real-time load) was \$20 million lower.
- Given the importance of choosing the best out-of-market action to take under different conditions, we recommend that MISO:
 - ✓ Develop guidelines/procedures and supporting tools that govern manual operator actions. We are working with MISO on these guidelines/tools.
 - ✓ Provide additional training on the secondary impacts of actions.

IMM Summer Assessment (Slide 26)

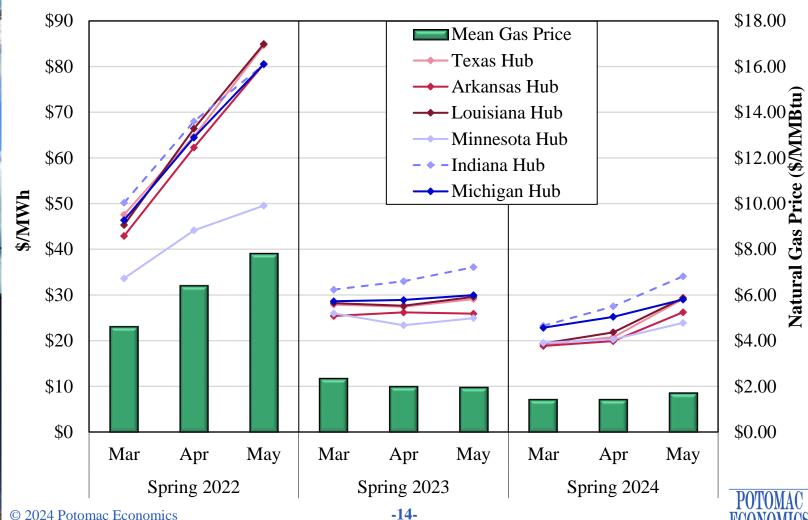
- We assessed the expected summer capacity margin based on the coincident peak summer forecast and the results of the seasonal capacity auction.
 - ✓ Excluding typical outages and derates, MISO can expect a capacity margin of 20.3 percent, which includes more than 12 GW of emergency-only capacity.
 - ✓ Including typical forced outages of 6.8 GW and average non-firm imports in peak periods of 4.3 GW produces a projected capacity margin of 18.2 percent.
 - ✓ These levels exceed MISO's planning requirements.
- Considering planned outages observed in past summers and demand response likely to be unavailable, the estimated capacity margin falls to 6.4 percent.
- We also evaluate unusually hot conditions where demand is projected to be 7 GW higher and an additional 7.6 GW of supply may be unavailable.
 - ✓ In the high temperature case with only 2-hour demand response assumed to be available, we project a capacity deficit of 6.9 percent.
 - ✓ This is a low-probability case and MISO would likely have access to additional imports from neighboring systems to satisfy its needs.
- Overall, we find that MISO will be capacity sufficient during the summer peak

2024-2025 PRA Results

2024-2025 Planning Resource Auction Results (Slide 27)

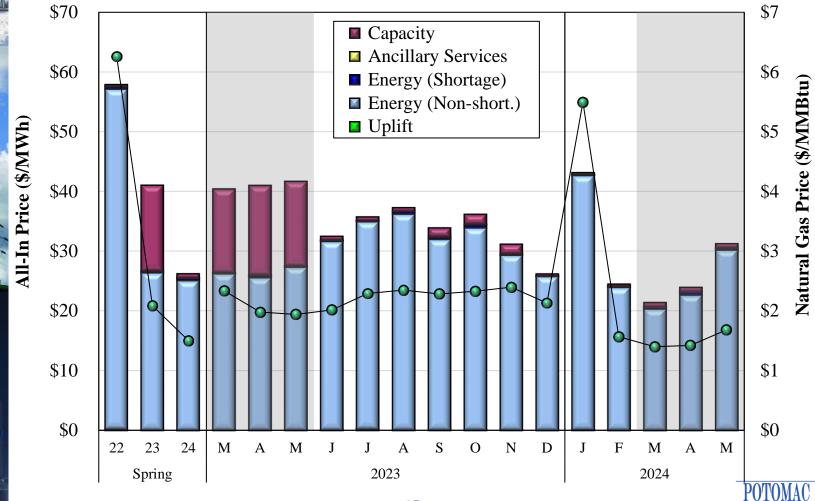
- In April MISO cleared its second seasonal capacity auction.
 - ✓ Across the four seasons, market clearing prices average nearly \$20 per MW-day, with the lowest unconstrained prices in the winter and highest in spring.
 - ✓ Zone 5 fell short of its local clearing requirement (LCR) in the fall and spring by 872.4 MW and 196.4 MW, respectively.
 - ✓ The shortage was due to the retirement of two large coal-fired resources after the summer and long-duration planned outages in those shoulder seasons.
 - ✓ The report shows that these shortages were priced inefficiently high, which will require zonal RBDCs to address.

				Prices (\$/MW-Day)		
Season	Capacity Procured	Offered Not Cleared	LOLE Target	Rest of Market	Zone 5 (MO)	
Summer 24	136,064	4,624	0.10	\$30.00	_	
Fall 24	125,551	9,327	0.01	\$15.00	\$719.81	
Winter 24/25	131,377	17,061	0.01	\$0.75		
Spring 25	127,791	8,825	0.01	\$34.10	\$719.81	
PRA Year	130,196	9,959	0.13	\$19.96	\$367.59	
	130,170	,	0.13	Ψ17.70	10101110	

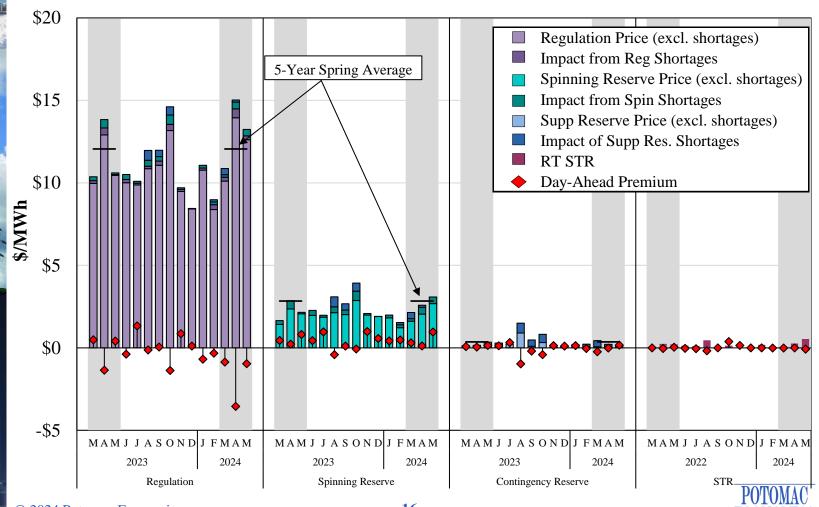

Submittals to External Entities and Other Issues

During the Spring Quarter, we:

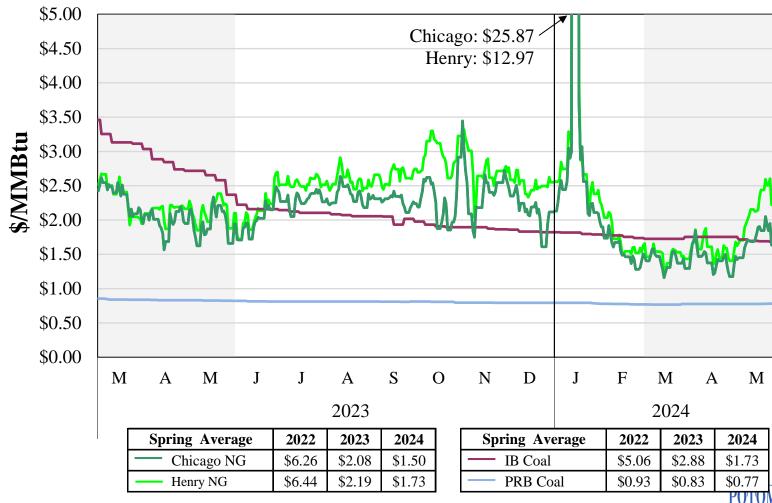
- Responded to several FERC questions related to prior referrals and FERC investigations, and we responded to requests for information on market issues.
- Presented the IMM Winter Quarterly report to the MSC and recent market results to the ERSC.
- Filed comments in support of MISO's and MDU's complaints regarding market-to-market coordination of the Charlie Creek constraint in SPP.
- Continued working with MISO to review proposals to revise the M2M "firm flow entitlement" allocation, which will have large economic impacts.
- Worked with MISO on recommended operational improvements and produced memos and summaries of the recommendations.
- Met with OMS on market issues and planning issues.
- Continued working with MISO and participants to address concerns with LRTP Tranche 2, including presenting concerns regarding the benefit-cost analysis methodologies.



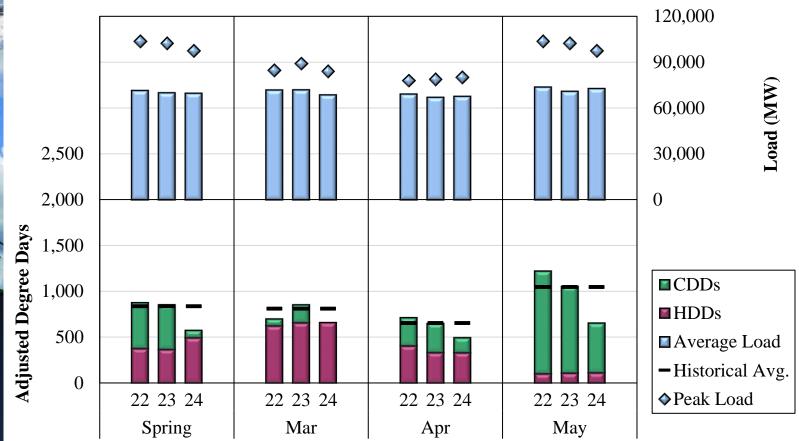
Day-Ahead Average Monthly Hub Prices Spring 2022–2024



All-In Price Spring 2022 – 2024



Ancillary Services Prices Spring 2023–2024



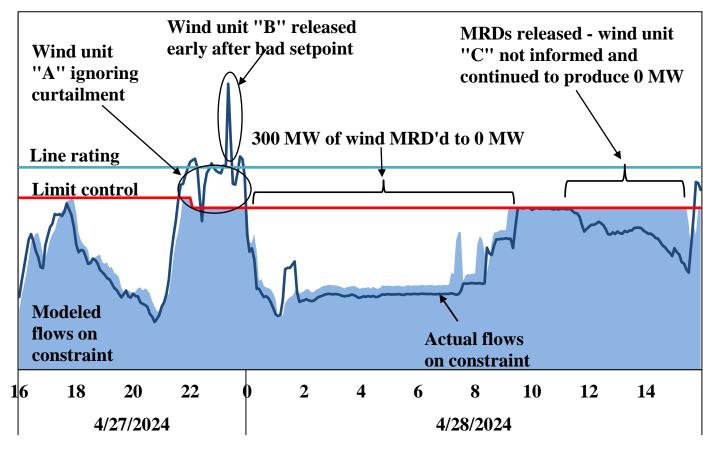
MISO Fuel Prices 2023–2024

Load and Weather Patterns Spring 2022–2024

<u>Notes</u>: Midwest degree day calculations include four reprentative cities: Indianapolis, Detroit, Milwaukee and Minneapolis. The South region includes Little Rock and New Orleans.

Capacity, Energy and Price Setting Share Spring 2023–2024

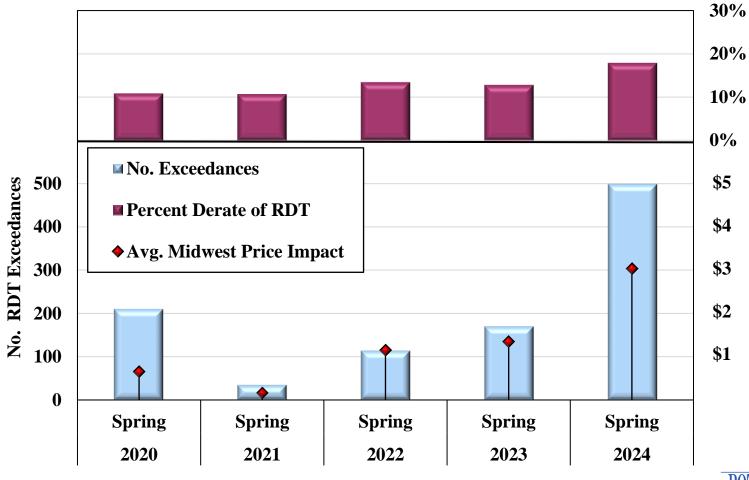
	_	Unforced Capacity				Energy Output		Price Setting				
	Spring	Total (Total (MW)		Share (%)		Share (%)		SMP (%)		LMP (%)	
		2023	2024	2023	2024	2023	2024	2023	2024	2023	2024	
	Nuclear	10,905	10,869	9%	8%	15%	14%	0%	0%	0%	0%	
-	Coal	40,291	37,638	32%	29%	23%	22%	34%	29%	73%	69%	
	Natural Gas	60,613	61,931	47%	48%	38%	38%	64%	70%	89%	86%	
A	Oil	1,448	1,506	1%	1%	0%	0%	0%	0%	1%	0%	
E	Hydro	4,034	4,166	3%	3%	2%	2%	1%	0%	3%	1%	
	Wind	4,769	4,960	4%	4%	19%	21%	0%	0%	78%	77%	
	Solar	2,808	4,491	2%	3%	0%	2%	0%	0%	9%	20%	
	Other	2,743	2,822	2%	2%	2%	0%	0%	0%	1%	1%	
	Total	127,609	128,382									



600

400

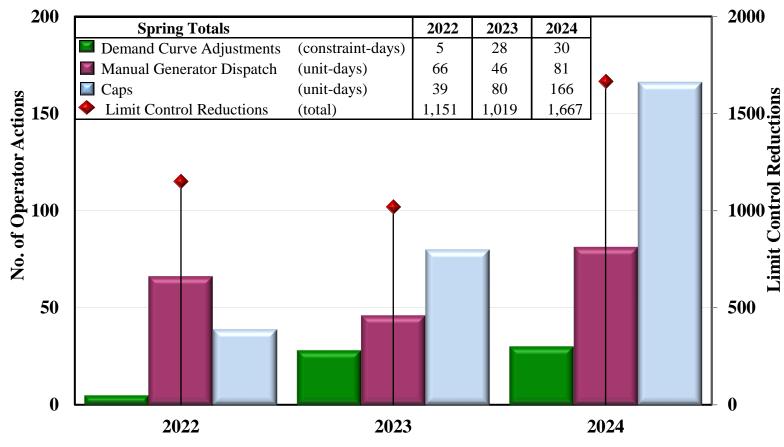
200


Wind-Related Constraint Management Challenges Base Fenoch Constraint

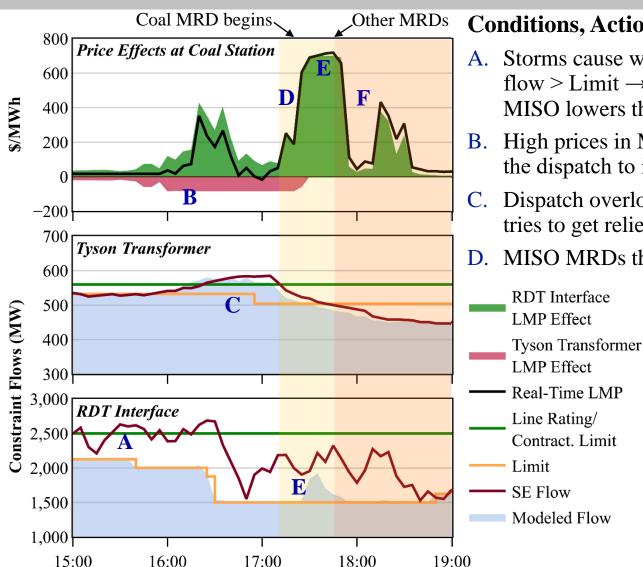
South to North RDT Exceedances, Derates and Midwest Price Impacts

Avg. Midwest Price Impact \$/MWh

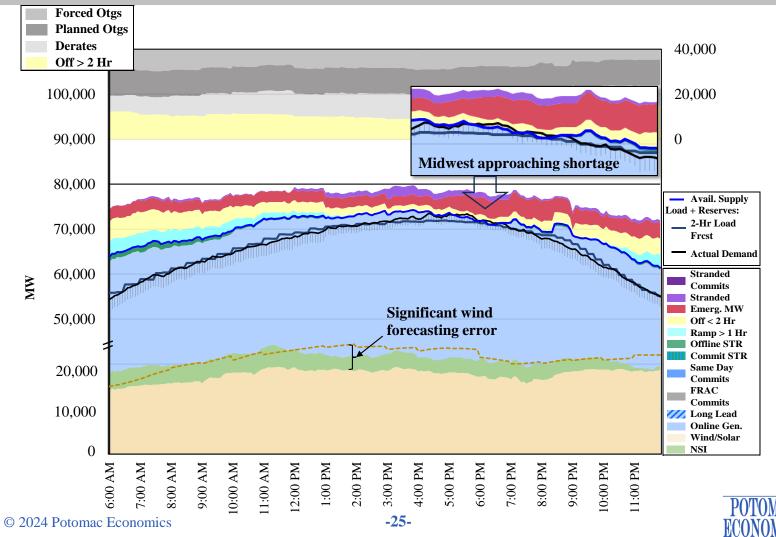
Avg. Pct. Derate



MISO Operator Intervention Decisions


	Operator Decisions	Effect of Action	Pros / Cons
	Aduistment	Allows the dispatch model to access more costly dispatch actions to lower constraint flows	Allows the dispatch model to optimally manage the constraint
		Reduces flows on constraints by providing counterflows.	When units are economic to commit, they will lower costs, but may raise uplift when uneconomic
	Transmission Derate with Limit Control Adjustment	Causes the dispatch to reduce the modeled flows to makes room on the constraint for the unmodeled constraint flows.	An efficient means to account for unmodeled flows. But not efficient when the violation is caused by modeled flows.
	Manual Redispatch (MRD)	Manually specifies a dispatch level for a resource to reduce constraint flows.	Provides quick relief, but is rarely efficient. Prevents the dispatch from efficiently pricing the congestion and increases uplift.
	Cap Resources	Manually specifies a maximum dispatch level for a resource to prevent increasing constraint flows. -22-	Effectively limits flows, but is rarely efficient. Prevents the dispatch from efficiently pricing the congestion and increases uplift. POTOMAC ECONOMICS

MISO Operator Actions for Congestion Management


Congestion Management Issues May 21

Conditions, Actions, and Effects:

- Storms cause wind to under-perform \rightarrow RDT flow > Limit → Prices spike in Midwest and MISO lowers the limit control
- B. High prices in Midwest (due to the RDT) cause the dispatch to increase the coal unit output \rightarrow
- C. Dispatch overloads Tyson transformer \rightarrow MISO tries to get relief by lowering limit control
- MISO MRDs the coal unit down by ~1300
 - E. Loss of 1300 MW & wind cause Midwest shortage → the modeled RDT flow > dispatch limit → sustained price spike in Midwest →
 - F. High Midwest prices cause many constraint violations \rightarrow MISO MRDs 14 units \rightarrow \$900,000 in DAMAP total

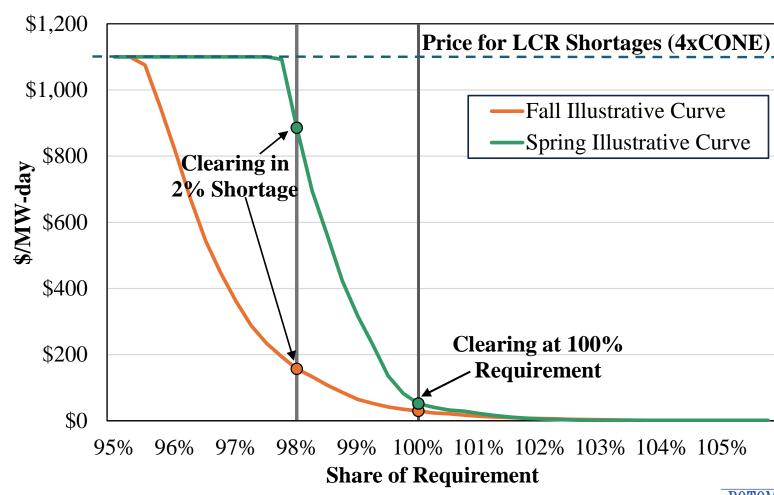
Midwest Shortage Conditions May 21

Summer 2024 Planning Reserve Margins

		Alternative IMM Scenarios*					
	Base	Realistic	Realistic -	High Temperature Cases			
	Scenario	Scenario	<=2HR	Realistic	Realistic		
	Scenario	Scenario	<-211K	Scenario	<=2HR		
Load							
Base Case	122,600	122,600	122,600	122,600	122,600		
High Load Increase	=	-	-	6,690	6,690		
Total Load (MW)	122,578	122,578	122,578	129,290	129,290		
Generation							
Internal Generation Excluding Exports	132,120	132,120	132,120	132,120	132,120		
BTM Generation	4,331	4,331	3,336	4,331	3,336		
Unforced Outages and Derates**	(43)	(12,458)	(12,458)	(20,058)	(20,058)		
Adjustment due to Transfer Limit	(1,417)	-	-	-			
Total Generation (MW)	134,991	123,993	122,998	116,393	115,398		
Imports and Demand Response***							
Demand Response (ICAP)	8,109	6,082	3,080	6,082	3,080		
Firm Capacity Imports	4,335	4,335	4,335	4,335	4,335		
Margin (MW)	24,857	11,832	7,836	(2,480)	(6,477)		
Margin (%)	20.3%	9.7%	6.4%	-1.9%	-5.0%		
Expected Capacity Uses and Additions							
Expected Forced Outages****	(6,823)	(6,702)	(6,702)	(6,702)	(6,702)		
Non-Firm Net Imports in Emergencies	4,260	4,260	4,260	4,260	4,260		
Expected Margin (MW)	22,295	9,390	5,394	(4,922)	(8,919)		
Expected Margin (%)	18.2%	7.7%	4.4%	-3.8%	-6.9%		

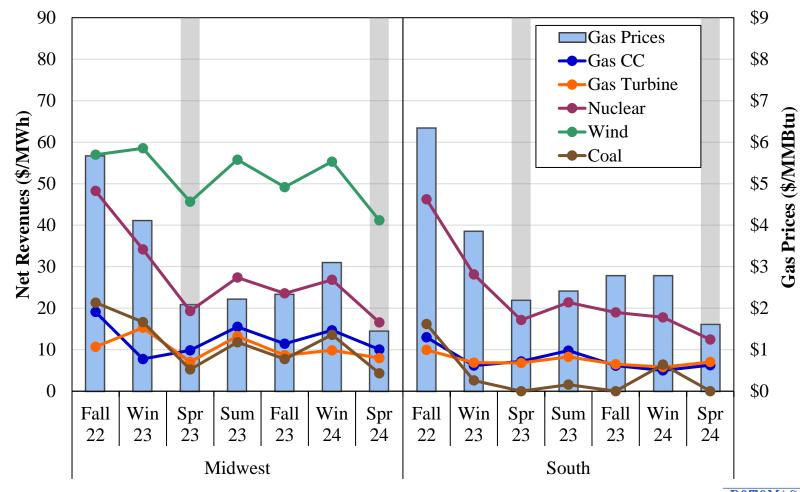
^{*} Assumes 75% response from DR.

^{****} Base scenario assumes 5% forced outage rate for internal and BTM generation. Alternative cases use historical average forced outages/derates during peak summer hours.

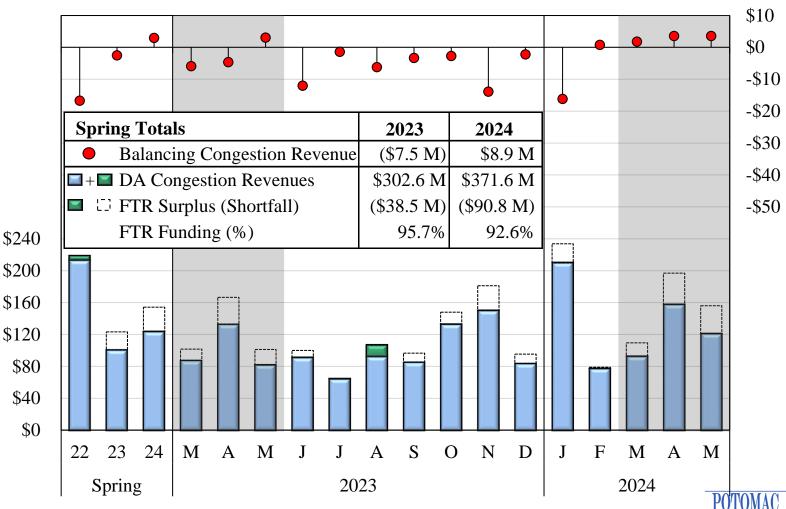


^{**} Base scenario shows approved planned outages for summer 2024. Realistic cases use historical averages during peak summer hours. High temp. cases are based upon MISO's 2024 Summer Assessment.

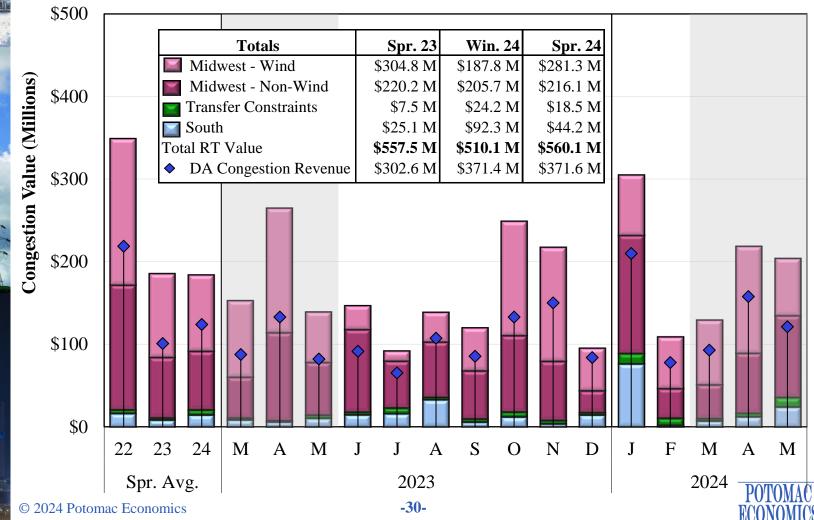
^{***} Cleared amounts for the Summer Season of the 2024/2025 planning year.



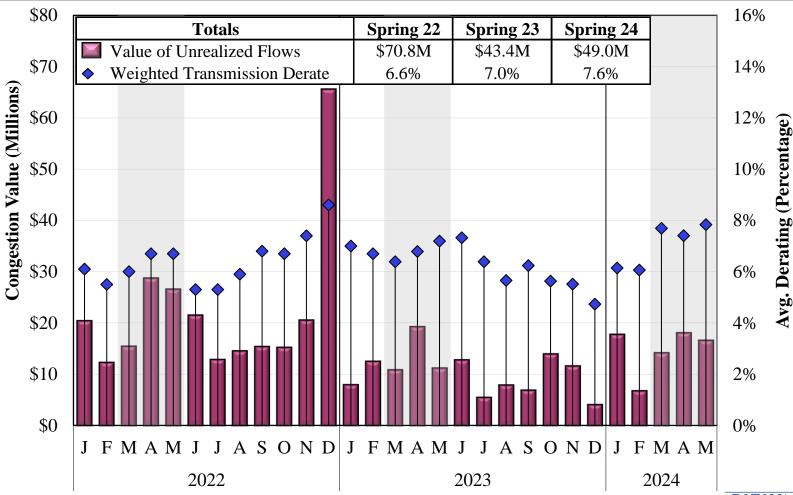
Zone 5 Capacity Clearing



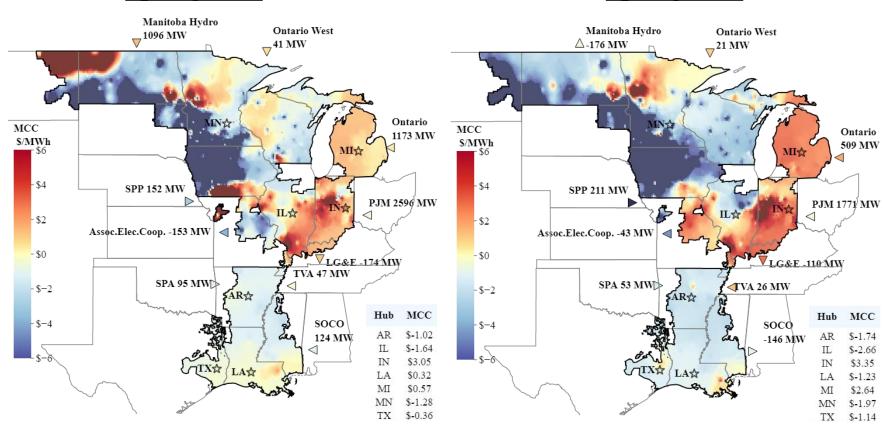
Net Revenues by Technology 2023-2024



Day-Ahead Congestion, Balancing Congestion, and FTR Underfunding



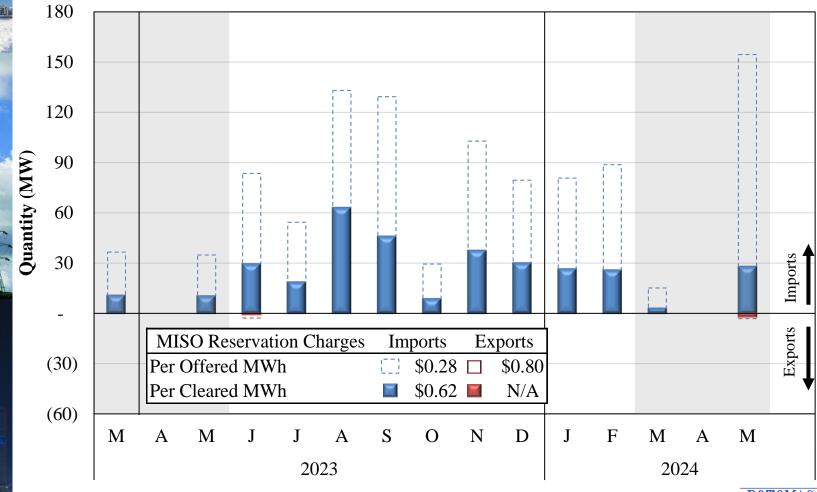
Value of Real-Time congestion Spring 2022-2024


Value of Unrealized Transmission Flows Due to Use of Limit Control

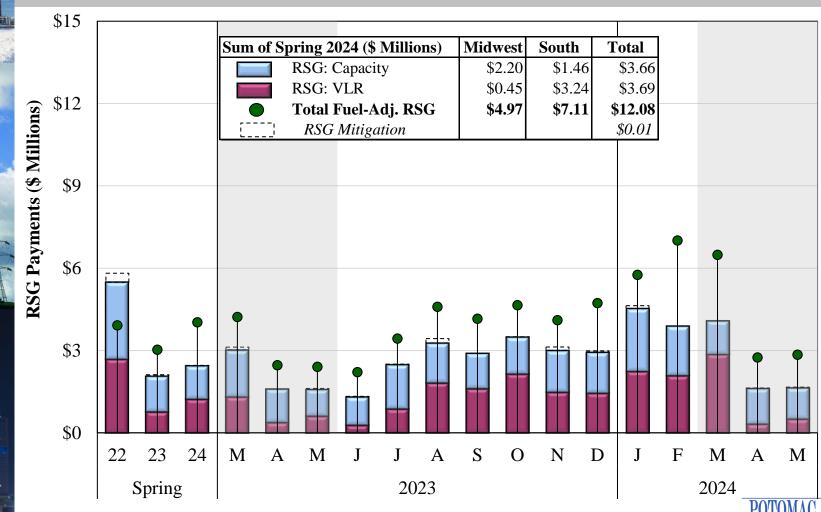
Average Real-Time Congestion ComponentsSpring 2023 – 2024

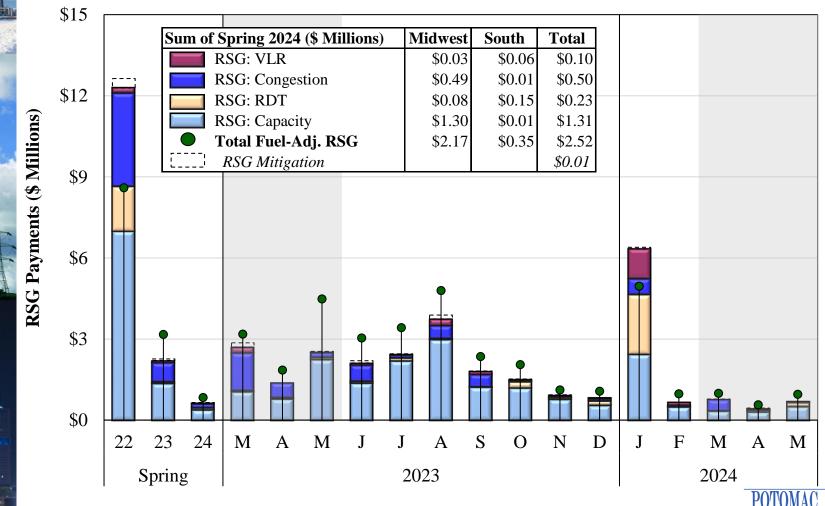
Spring 2023

Spring 2024

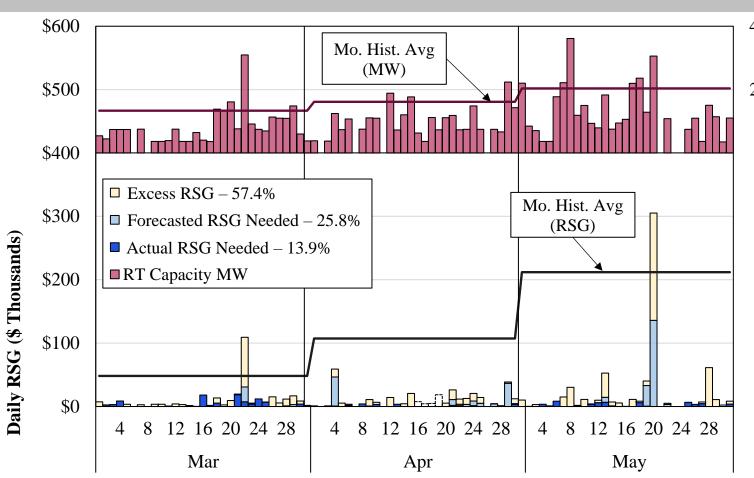


Benefits of Ambient-Adjusted and Emergency Ratings Spring 2023–2024


3			ngs (\$ Millions	<u>s)</u>	- # of Facilites	Share of Congestion	
	Spring	Ambient Adj. Emergency Ratings Ratings		Total	for 2/3 of Savings		
2023	3 Midwest	\$54.6	\$30.09	\$84.7	8	15.8%	
1	South	\$0.3	\$1.47	\$1.8	1	6.1%	
	Total	\$54.9	\$31.6	\$86.5	9	15.3%	
2024	4 Midwest	\$39.2	\$24.82	\$64.0	15	12.1%	
	South	\$0.6	\$1.81	\$2.4	2	5.2%	
	Total	\$39.9	\$26.6	\$66.5	17	11.5%	


Coordinated Transaction Scheduling (CTS) Spring 2023–2024

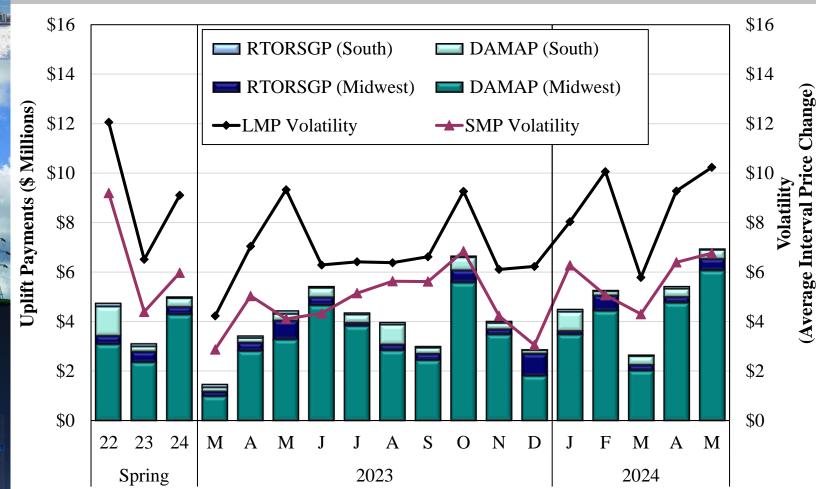
Day-Ahead RSG Payments Spring 2023–2024



Real-Time RSG Payments Spring 2023–2024

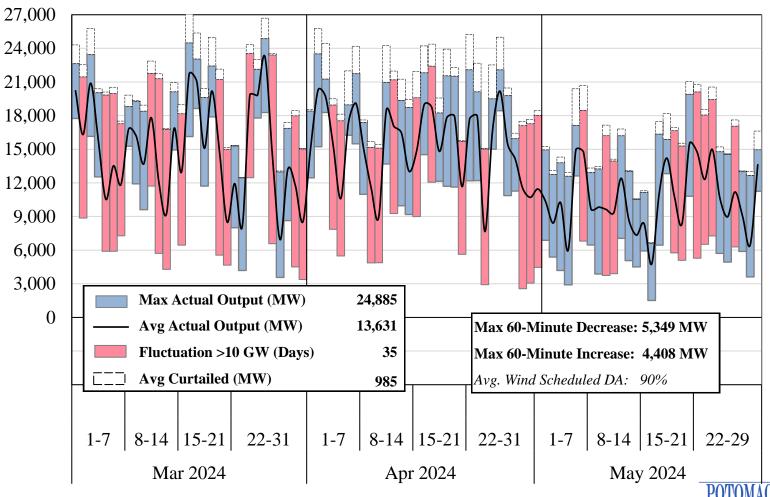
Real-Time Capacity Commitment and RSG Spring 2024

^{* &}lt;1% of the RSG could not be classified due to gaps in market data and is shown in the transparent bars.



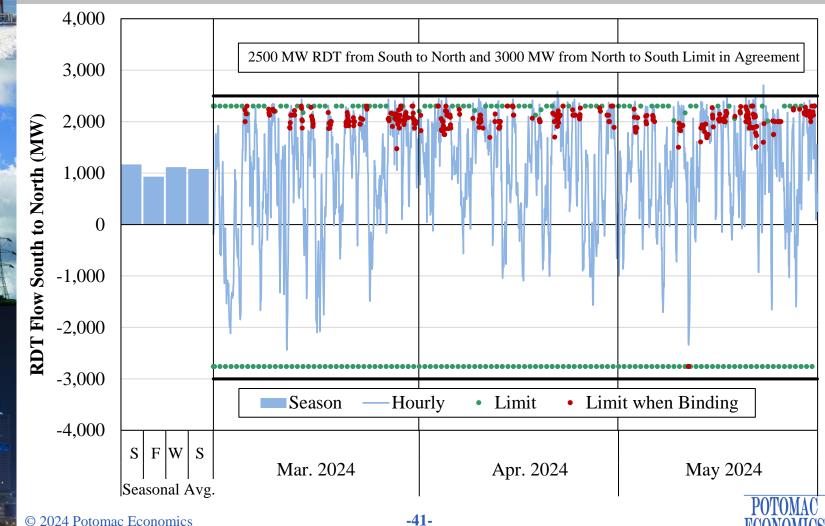
Commitments (GW

Max Hourly



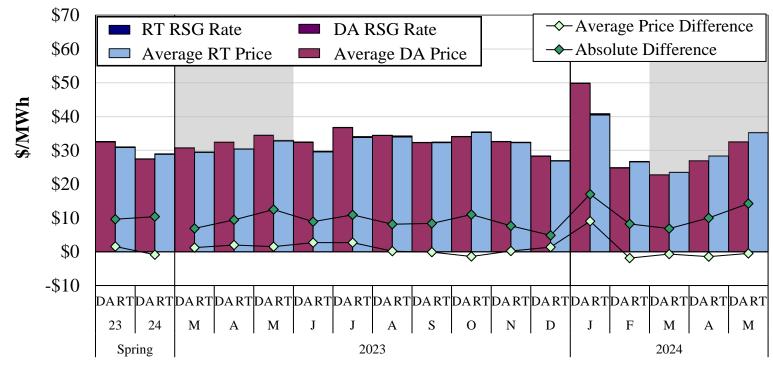
Price Volatility Make Whole Payments Spring 2022–2024

Wind Output in Real Time Daily Range and Average



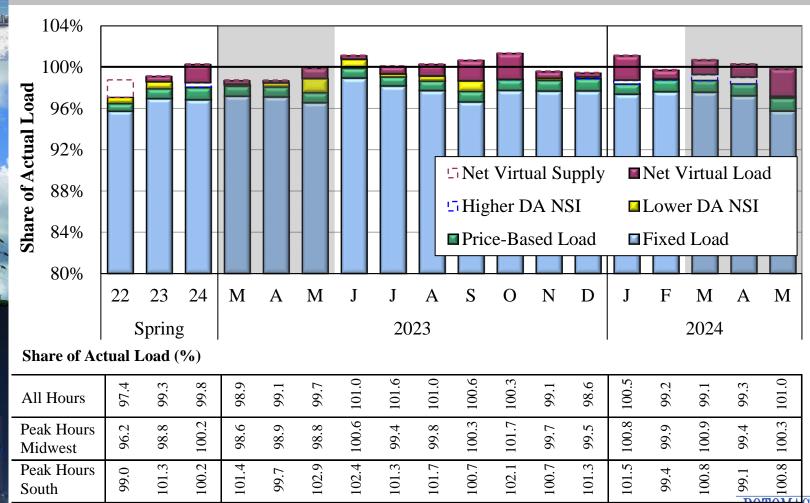
Wind Forecast and Actual Output Spring 2024

Wind | Curtailed Above Forecast — 2-3 Hour Out Wind Forecast 30000 Mar. 2024 Spring 2024 25000 Real-Time Wind (MW) 13,631 20000 Day-Ahead Wind (MW) 12,214 15000 Avg Curtailments (MW) 985 10000 Forecast Errors (%) -0.7% 5000 Absolute Errors (%) 7.7% 0 30000 **Spring 2023** Apr. 2024 25000 Real-Time Wind (MW) 12,324 20000 Day-Ahead Wind (MW) 10,744 15000 Avg Curtailments (MW) 910 10000 Forecast Errors (%) -1.2% 5000 Absolute Errors (%) 7.0% Winter 2024 30000 May 2024 Real-Time Wind (MW) 11,792 25000 Day-Ahead Wind (MW) 10,136 20000 Avg Curtailments (MW) 402 15000 Forecast Errors (%) -0.9% 10000 Absolute Errors (%) 8.2% 5000 0



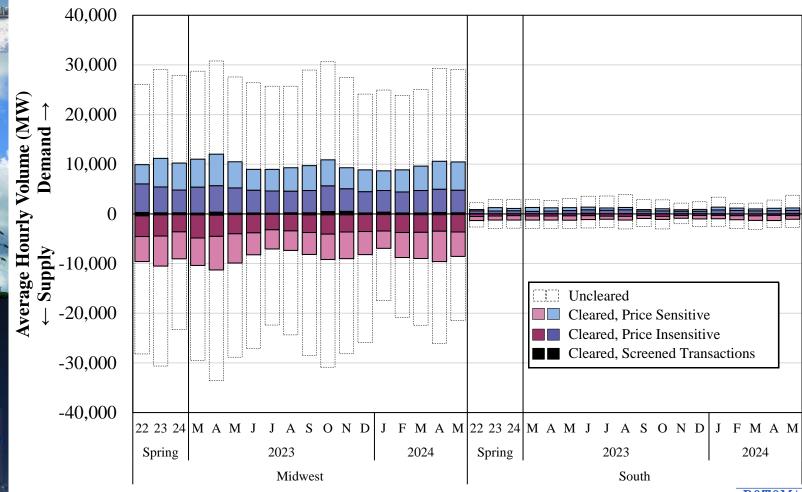
Real-Time Hourly Inter-Regional Flows Spring 2024

Day-Ahead and Real-Time Price Convergence Spring 2023–2024

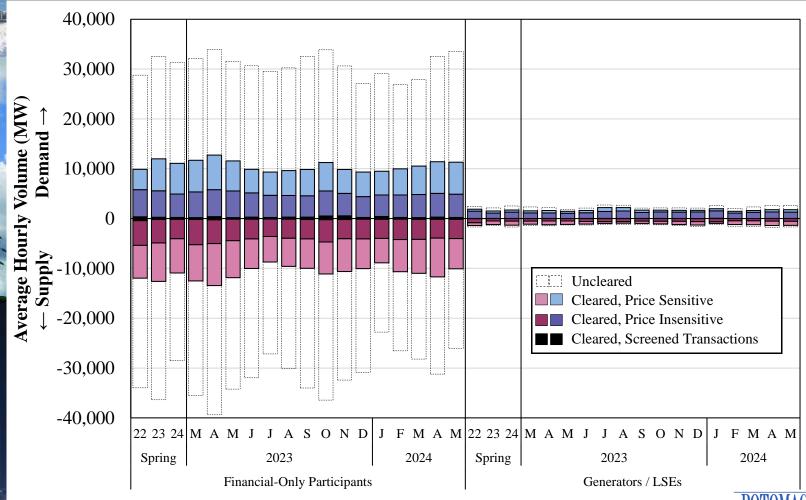


Average DA-RT Price Difference Including RSG (% of Real-Time Price)

Indiana Hub	5	-5	4	7	5	9	8	0	0	-4	1	5	22	-7	-3	-5	-8
Michigan Hub	4	-10	6	4	1	6	8	2	-5	-7	1	3	21	-5	-1	-4	-23
Minnesota Hub	-1	-5	-6	-10	13	-4	4	-6	-2	-3	7	1	5	-3	-5	-7	-2
Arkansas Hub	4	-4	5	0	5	6	5	2	-3	-4	3	5	14	-4	-3	-4	-6
Texas Hub	5	-4	5	5	4	7	11	4	3	-3	5	3	6	-2	-3	-1	-7
Louisiana Hub	3	-2	1	3	4	11	13	4	0	-3	6	3	13	-3	-3	-3 [NAIDO



Day-Ahead Peak Hour Load Scheduling Spring 2022–2024



Virtual Load and Supply Spring 2022–2024

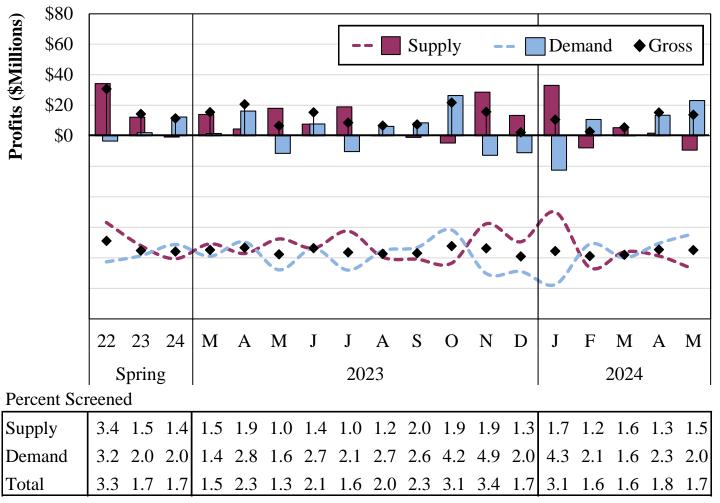
Virtual Load and Supply by Participant Type Spring 2022–2024

Virtual Profitability Spring 2022–2024

\$12

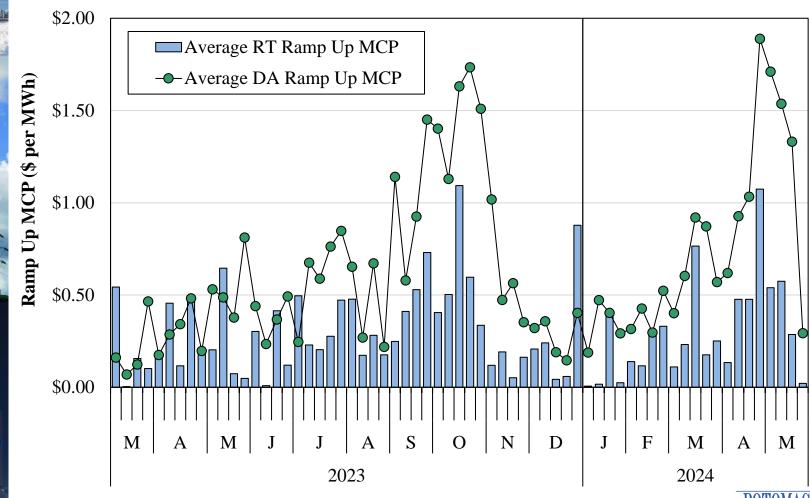
\$9

\$6

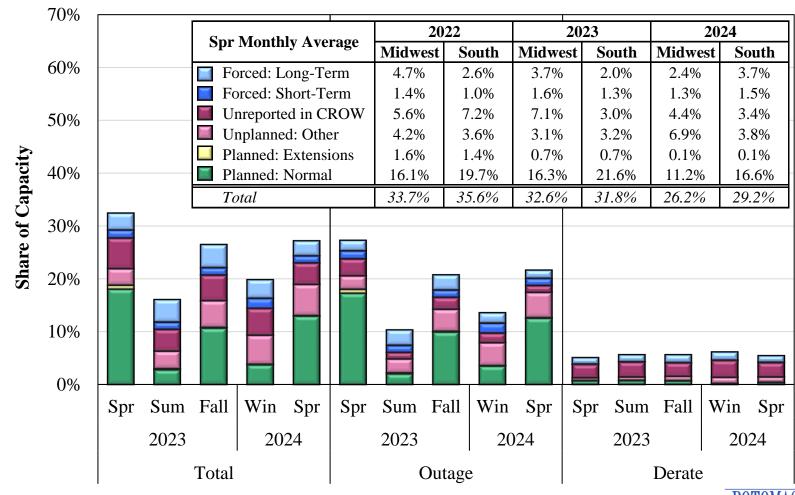

\$3

\$0

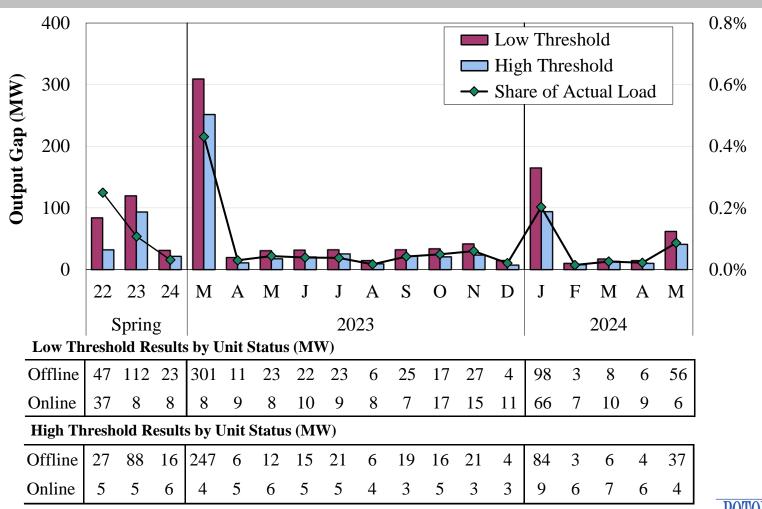
-\$3


-\$6

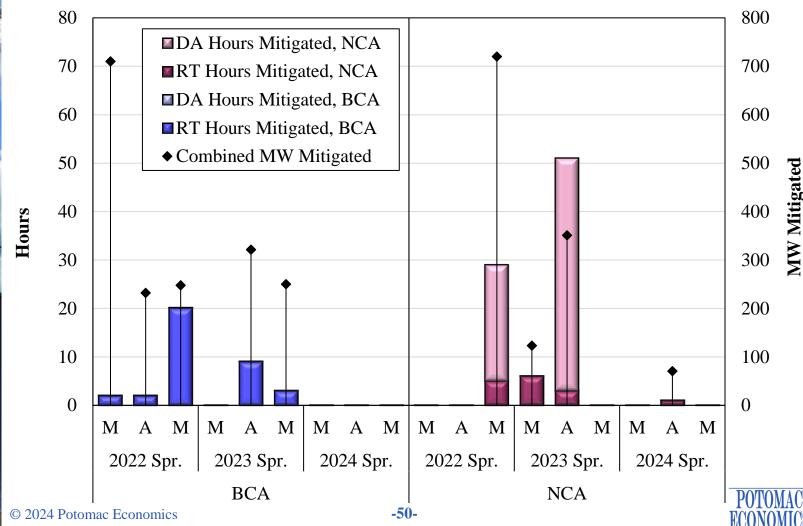
Profitability Per MW



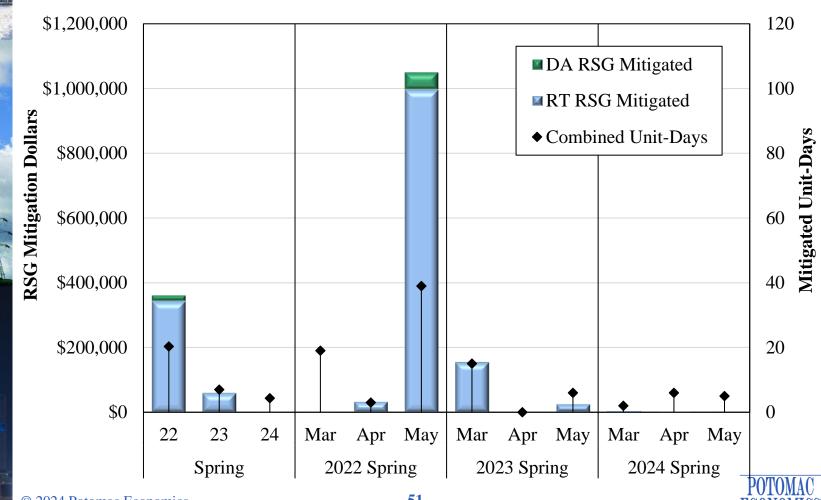
Day-Ahead and Real-Time Ramp Up Price Spring 2022–2024



Generation Outages and Deratings Spring 2022–2024


Monthly Output Gap Spring 2022–2024

Share of Actual Load



Day-Ahead And Real-Time Energy Mitigation Spring 2022 - 2024

Day-Ahead and Real-Time RSG Mitigation **Spring 2022 - 2024**

List of Acronyms

•	AAR	Ambient-Adjusted Ratings	•	ORDC	Operating Reserve Demand Curve
•	AMP	Automated Mitigation Procedures	•	PITT	Pseudo-Tie Issues Task Team
•	BCA	Broad Constrained Area	•	PRA	Planning Resource Auction
•	CDD	Cooling Degree Days	•	PVMWP	Price Volatility Make Whole
•	CMC	Constraint Management Charge			Payment
•	CTS	Coordinated Transaction Scheduling	•	RAC	Resource Adequacy Construct
•	DAMAP	Day-Ahead Margin Assurance	•	RDT	Regional Directional Transfer
		Payment	•	RSG	Revenue Sufficiency Guarantee
•	DDC	Day-Ahead Deviation & Headroom	•	RTORSG	PReal-Time Offer Revenue
		Charge			Sufficiency Guarantee Payment
•	DIR	Dispatchable Intermittent Resource	•	SMP	System Marginal Price
•	HDD	Heating Degree Days	•	SOM	State of the Market
•	ELMP	Extended Locational Marginal Price	•	STE	Short-Term Emergency
•	JCM	Joint and Common Market Initiative	•	STR	Short-Term Reserves
•	JOA	Joint Operating Agreement	•	TLR	Transmission Loading Relief
•	LAC	Look-Ahead Commitment	•	TCDC	Transmission Constraint
•	LSE	Load-Serving Entities			Demand Curve
•	M2M	Market-to-Market	•	UD	Uninstructed Deviation
•	MSC	MISO Market Subcommittee	•	VLR	Voltage and Local Reliability
•	NCA	Narrow Constrained Area	•	WUMS	Wisconsin Upper Michigan System