

IMM Quarterly Report: Winter 2025

Presented to:

Market Subcommittee

Carrie Milton Potomac Economics

April 10, 2025

Winter Summary

- POTOMAC -ECONOMICS
- The MISO markets performed competitively, and market power mitigation was infrequent during the winter.
- Energy prices rose 29 percent compared over last winter as average gas prices rose 21 (Chicago) to 41 (Henry Hub) percent partly due to cold weather events.
 - Higher STR requirements to address uncertainty during Winter Storm Enzo led to efficient increases in STR and energy prices during the storm.
 - Peak load rose 1 percent year over year, while average load was up 6 percent.
 - MISO South hit a new all-time winter peak record during Winter Storm Enzo.
 - Ancillary service prices increased more than 30 percent over last winter.
- MISO declared Conservative Operations for Winter Storms Blair, Cora and Enzo but did not need to advance into its emergency procedures.
 - Unseasonably cold conditions in January did not have any major market impacts.
- Day-ahead congestion revenue fell 13 percent, while real-time congestion increased by 4 percent.
- Average hourly wind output was 16 percent higher than last year, and wind curtailments increased 26 percent, averaging 508 MW per hour.

Quarterly Summary

		Chan	ge ¹				Chan	ge ¹	
Winter			Prior	Prior			-	Prior	Prior
		Value	Qtr.	Year			Value	Qtr.	Year
RT Energy Prices (\$/MWh)	9	\$40.57	49%	29%	FTR Funding (%)		99%	100%	96%
Fuel Prices (\$/MMBtu)					Wind Output (MW/hr)		13,625	17%	16%
Natural Gas - Chicago		\$3.75	95%	21%	Wind Curtailed (MW/hr)		508	-35%	26%
Natural Gas - Henry Hub		\$3.91	83%	41%	Guarantee Payments (\$M) ⁴				
Western Coal		\$0.81	1%	2%	Real-Time RSG		\$6.7	73%	-18%
Eastern Coal		\$1.82	5%	1%	Day-Ahead RSG		\$12.6	83%	15%
Load (GW) ²					Day-Ahead Margin Assurance		\$10.3	-20%	-4%
Average Load		80.0	11%	6%	Real-Time Offer Rev. Sufficiency		\$0.7	-26%	-64%
Peak Load	•	108.2	1%	1%	Price Convergence ⁵				
% Scheduled DA (Peak Hour)		99.7%	101.6%	99.8%	Market-wide DA Premium	•	4.0%	0.4%	8.6%
Transmission Congestion (\$M)					Virtual Trading				
Real-Time Congestion Value		\$531.2	35%	4%	Cleared Quantity (MW/hr)	•	23,771	4%	6%
Day-Ahead Congestion Revenue		\$323.6	-1%	-13%	% Price Insensitive	•	52%	49%	48%
Balancing Congestion Revenue ³		\$1.6	-\$8.6	-\$17.6	% Screened for Review		2%	2%	2%
Ancillary Service Prices (\$/MWh)					Profitability (\$/MW)		\$0.8	\$0.4	\$0.3
Regulation		\$17.66	22%	92%	Dispatch of Peaking Units (MW/hr)		1,059	1,684	1,328
Spinning Reserves		\$2.53	-6%	39%	Output Gap- Low Thresh. (MW/hr)		79	33	63
Supplemental Reserves		\$0.92	23%	452%					
Short-Term Reserves		\$0.71	267%	776%					
Key: Expected		Notes:	1. Values r	not in italic	s are the values for the past period rather than t	he chang	е.		

Monitor/Discuss

 values not in italics are the values for the past period rather than the change. NULES. 2. Comparisons adjusted for any change in membership.

Concern

3. Net real-time congestion collection, unadjusted for M2M settlements.

4. Includes effects of market power mitigation.

5. Values include allocation of RSG.

- POTOMAC -ECONOMICS

Quarterly Highlights: Winter 2025 Winter Storm Enzo (Slides 40-41)

- On January 21, Winter Storm Enzo moved across MISO's footprint, bringing frigid temperatures, ice, and snowy conditions to MISO South.
 - New Orleans saw 10 inches of snow, more than seen in over 100 years.
 - MISO South experienced a new peak winter load record of 33.1 GW.
- In preparation for the storm, MISO was forecasting high uncertainty and increased its STR requirements by 900 MW in the day-ahead and real-time markets.
 - This improved its ability to handle the uncertainty and the 9 GW of forced outages.
- MISO managed the storm reliably without declaring an emergency or incurring significant costs.
 - Uplift totaled just \$2.6 million, a reduction of more than 90 percent from Winter Storms Uri and Elliott and reduction of two-thirds from Winter Storm Heather.
 - Congestion during Enzo was \$100 million, much lower than in prior storms.
 - The highest average hourly system marginal price was \$334 per MWh.
 - Higher STR requirements led to higher STR clearing prices that were also reflected in the day-ahead and real-time prices, which prompted more imports on Jan. 21.

Quarterly Highlights: Winter 2025

Improvements in Reducing Out-of-Market Congestion Actions (Slide 20)

- We previously discussed concerns with out-of-market actions taken to manage congestion that can lead to significant costs and dispatch inefficiencies.
 - We recommended MISO rely more heavily on the markets to manage difficult constraints and avoid OOM actions, which included capping or manually dispatching wind and solar.
- In 2024, we worked with MISO to develop Congestion Management Guidelines related to OOM congestion actions. MISO also:
 - Provided operator training on these guidelines.
 - Improved the information available to operators on the sources of congestion management difficulties to facilitate better decisions, and
 - Developed metrics to track operators' use of OOM actions.
- MISO's efforts contributed to a remarkable 95 percent reduction in the use of capping and manual dispatch of wind and solar units this winter.

Quarterly Highlights: Winter 2025

The Need to Commit LAC-Recommended Resources (Slides 43-44)

- MISO has significantly reduced inefficient commitments and associated RSG costs.
- However, we are concerned that operators often do not commit resources that are recommended by its Look-Ahead Commitment model that are economic.
 - An example of the effects of not committing resources needed to manage severe congestion occurred on December 12 when one constraint was in violation for more than 9 hours and produced over \$36 million in congestion costs.
 - LAC began recommending starting multiple units from 1:30 to 10:30 am for the constraint before they were ultimately committed.
 - A simulation we performed showed that committing these units would have reduced the congestion by \$9.5 million and significantly reduced the constraint violations.
 - A second example occurred Feb. 19 when a contingency reserve shortage for 30 minutes raised average prices to almost \$1900/MWh. Forecast errors contributed to this shortage, but accepting more LAC recommendations would have reduced it.
- MISO has worked to improve LAC and its recommendations, which are much more trustworthy and are often essential. Further improvements are planned.
 - We encourage MISO to continue to improve its processes for responding to LAC recommendations, particularly those needed to manage congestion.

Quarterly Highlights: Winter 2025

Virtual Trading around Predictable Modeling Issues (Slide 45)

- Modeling inconsistencies have caused day-ahead and real-time prices at some aggregate pricing nodes to vary under specific conditions. This can:
 - Invite low-risk virtual trading that can profit by exploiting the inconsistency; and
 - Generate market shortfalls or uplift costs;
- A modeling inconsistency at one location in one month this quarter:
 - Generated increased virtual revenues by nearly \$8 million and generated profits over \$3 million.
 - Trading volume at this location increased eighteen-fold in the days following the initial appearance of the modeling issue and continued for a few days after it ceased.
- Since the conditions that cause the modeling inconsistencies to generate price differences are unpredictable, it is difficult to forecast the costs of this issue.
- To address these concerns, we continue to recommend that MISO implement changes to better synchronize the definitions of the aggregate pricing nodes from the FTR market through the day-ahead market and into the real-time market.

Submittals to External Entities and Other Issues

- During the Winter Quarter, we:
 - Responded to several FERC questions related to prior referrals and FERC investigations, and we responded to requests for information on market issues.
 - Presented the IMM Fall Quarterly report to the MSC and ERSC, and the IMM's comments on MISO's proposed LMR changes to the RASC.
 - Responded to stakeholder feedback on the IMM comments on LMR reforms.
- We worked with MISO on recommended operations improvements.
- We continued to investigate potential tariff violations in the market-to-market coordination of congestion between SPP, PJM and MISO.
- We also continued to support upcoming filings:
 - We provided an affidavit in support of MISO's filing to improve provisions governing Demand Response Resources to address market manipulation vulnerabilities.
- During the Winter Quarter, FERC issued an Order to Show Cause totaling nearly \$1 billion for an energy efficiency provider that we referred for manipulation.

Quarterly Market Results: Winter 2025

Day-Ahead Average Monthly Hub Prices Winter 2023–2025

All-In Price Winter 2023 – 2025

Ancillary Services Prices Winter 2023–2025

MISO Fuel Prices 2023–2025

Load and Weather Patterns Winter 2023–2025

<u>Notes</u>: Midwest degree day calculations include four reprsentative cities: Indianapolis, Detroit, Milwaukee and Minneapolis. The South region includes Little Rock and New Orleans.

		Energy Output		Price Setting						
Winter	Total	(MW)	Share (%)		Share (%)		SMP (%)		LMP (%)	
	2023/24	2024/25	2023/24	2024/25	2023/24	2024/25	2023/24	2024/25	2023/24	2024/25
Nuclear	11,321	11,079	8%	8%	13%	14%	0%	0%	0%	0%
Coal	39,855	37,198	29%	27%	29%	32%	37%	22%	82%	68%
Natural Gas	66,367	64,777	48%	47%	38%	33%	62%	78%	95%	92%
Oil	1,589	1,546	1%	1%	0%	0%	0%	0%	1%	0%
Hydro	3,890	3,652	3%	3%	1%	1%	0%	0%	1%	2%
Wind*	13,071	16,991	10%	12%	16%	17%	0%	0%	53%	61%
Solar**	294	632	0%	0%	1%	2%	0%	0%	2%	3%
Other	723	954	1%	1%	1%	1%	0%	0%	1%	4%
Total	137,109	136,828								

* The capacity factor for wind increased from 40% in winter 23/24 to 53% in winter 24/25.

** New solar receives a 5% capacity factor in the winter. Nearly 6 GW nameplate of solar added since last winter.

Net Revenues by Technology 2023-2025

<u>NUMIUS</u>

Day-Ahead and Balancing Congestion and FTR Funding **ECONOMICS**

Value of Real-Time Congestion Winter 2023-2025

ECONOMICS

Average Real-Time Congestion Components Winter 2024 – 2025

MISO Operator Actions for Congestion Management Winter 2023-2025

Benefits of Ambient-Adjusted and Emergency Ratings Winter 2024–2025

		Sav	- # of Equilitar	Share of Congestion		
Winter		Ambient Adj. Ratings	Emergency Ratings			for 2/3 of Savings
2024	Midwest	\$32.4	\$19.85	\$52.3	5	13.7%
	South	\$8.2	\$5.06	\$13.3	1	14.3%
	Total	\$40.7	\$24.9	\$65.6	6	13.8%
2025	Midwest	\$75.7	\$30.81	\$106.5	2	22.0%
	South	\$5.2	\$4.75	\$9.9	1	12.5%
	Total	\$80.8	\$35.6	\$116.4	3	20.7%

Coordinated Transaction Scheduling (CTS) Winter 2024–2025

Day-Ahead RSG Payments Winter 2023–2025

Real-Time RSG Payments

Winter 2024–2025

ECONOMICS

Real-Time Capacity Commitment and RSG Winter 2025

*1.4% of RSG could not be classified due to gaps in market data and is shown in the transparent bars.

Price Volatility Make Whole Payments Winter 2023–2025

KUONOMIOS

Wind and Solar Output in Real Time

Daily Range and Average

Wind Forecast and Actual Output Winter 2025

Real-Time Hourly Inter-Regional Flows Winter 2025

RCONOMICS

Day-Ahead Peak Hour Load Scheduling Winter 2023–2025

Virtual Load and Supply Winter 2023–2025

Virtual Load and Supply by Participant Type Winter 2023–2025

Virtual Profitability Winter 2023–2025

Day-Ahead and Real-Time Ramp Up Price Winter 2023–2025

Generation Outages and Deratings Winter 2023–2025

Monthly Output Gap Winter 2023–2025

Day-Ahead And Real-Time Energy Mitigation Winter 2023 - 2025

Day-Ahead and Real-Time RSG Mitigation Winter 2023 - 2025

Other Key Market Events

	Hist.			Jan-2025		
	Avg.	18	19	20	21	22
Minneapolis	8	-5	-13	-18	-19	7
Des Moines	13	8	-4	-9	-13	16
Detroit	19	22	11	8	2	0
Indianapolis	20	26	4	0	-3	-2
Chicago	18	14	1	-2	-8	0
Little Rock	31	32	18	14	17	13
New Orleans	46	57	35	30	27	23
Houston	46	47	33	29	25	19

Notes:Pink Background Means Low Temperature Under Historical AverageBy At Least 10 Degrees Fahrenheit.

Winter Storm Enzo Congestion Maps

Extreme Net Load Ramp

January 19, 2025

Quad Cities Constraint Commitment Alternative

December 12, 2024

Contingency Reserve Shortage February 19, 2025 4,000 Systemwide Prices (\$/MWh) 2,000 0 Maximum Reserve Deficit 1163 MW Max Contig. Reserve Deficit 431 MW 3000 Contingency Reserve Margin (MW) Max LAC Recommendations 905 MW **MISO** Commitments 450 MW 2000 1000 0 -1000 5:00 5:15 5:30 5:45 6:00 6:15 6:30 6:45 7:00 7:15 7:30 7:45

© 2025 Potomac Economics

PM

ΡM

ΡM

ΡM

PM

PM

ΡM

ΡM

ΡM

ΡM

ΡM

ΡM

Virtual Trading around Modeling Inconsistency

Hourly Virtual Positions and Cumulative Revenues

List of Acronyms

- AAR Ambient-Adjusted Ratings
- AMP Automated Mitigation Procedures
- BCA Broad Constrained Area
- CDD Cooling Degree Days
- CMC Constraint Management Charge
- CTS Coordinated Transaction Scheduling
- DAMAP Day-Ahead Margin Assurance Payment
- DDC Day-Ahead Deviation & Headroom Charge
- DIR Dispatchable Intermittent Resource
- HDD Heating Degree Days
- ELMP Extended Locational Marginal Price
- JCM Joint and Common Market Initiative
- JOA Joint Operating Agreement
- LAC Look-Ahead Commitment
- LSE Load-Serving Entities
- M2M Market-to-Market
- MSC MISO Market Subcommittee
- NCA Narrow Constrained Area

- ORDC Operating Reserve Demand Curve
- PITT Pseudo-Tie Issues Task Team
- PRA Planning Resource Auction
- PVMWP Price Volatility Make Whole Payment
- RAC Resource Adequacy Construct
- RDT Regional Directional Transfer
- RSG Revenue Sufficiency Guarantee
- RTORSGP Real-Time Offer Revenue Sufficiency Guarantee Payment
- SMP System Marginal Price
- SOM State of the Market

.

- STE Short-Term Emergency
- STR Short-Term Reserves
 - TLR Transmission Loading Relief
- TCDC Transmission Constraint Demand Curve
- UD Uninstructed Deviation
- VLR Voltage and Local Reliability
- WUMS Wisconsin Upper Michigan System